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1
ANALYSIS

1.1 Measure theory

Exercise 1.1.1. Give an example of a set E , a σ-algebra A on E and an application f : E → F such
that {

f (A) : A ∈A
}

is not a σ-algebra on f (E).

Exercise 1.1.2. Let
C :=

{
[a,b) : a,b ∈Q, a < b

}
.

Prove that the σ-algebra σ(C ) generated by C is the Borel σ-algebra B(R) of R.
Hint. Recall thatQ is dense in R.

Exercise 1.1.3. Let E ,F be two sets, A and B two σ-algebras on E and F respectively and f : E → F
an application. Recall the notion of inverse image

f −1〈B〉 :=
{

x ∈ E : f (x) ∈ B
}

of a subset B ⊆ F by f .

1. Prove that the set of subsets of E defined by

f −1〈B〉 :=
{

f −1〈B〉 : B ∈B
}

is a σ-algebra on E .

2. Prove that the set of subsets of F defined by

f [A ] :=
{

B ⊆ F : f −1〈B〉 ∈A
}

is a σ-algebra on F .
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Exercise 1.1.4. Let E := [0,1), n ∈ {1,2, . . .} and 0 =: a0 < a1 < ·· · < an := 1. Give σ(C ), the smallest
σ-algebra on E which contains all elements of

C :=
{

[ai−1, ai ) : 16 i 6 n
}

.

Exercise 1.1.5. Let E be a set. Show that

A :=
{

A ⊆ E : A or E \ A is finite or countably infinite
}

is a σ-algebra on E .

Exercise 1.1.6. Let E be a set, A a σ-algebra on E and µ, ν two measures on (E ,A ) such that µ(E) =
ν(E) = 1. Prove that the set

D :=
{

A ∈A : µ(A) = ν(A)
}

is a Dynkin system.

Exercise 1.1.7. Let E be a set and A a σ-algebra on E . We suppose that A is finite or countably
infinite. For x in E we define

A(x) := ⋂
A∈A

s.t. x∈A

A.

1. Show that A(x) ∈A and that A(x) is the smallest element of A which contains x. (Prove that for
all A ∈A , x ∈ A =⇒ A(x) ⊆ A.)

2. Show that for all x, y ∈ E , y ∈ A(x) =⇒ A(x) = A(y).

Hint. Use that E \ A(y) ∈A .

3. Let E := {B ⊆ E : ∃x ∈ E , B = A(x)}. Prove that A =σ(E ).

4. Let P (E ) denote the powerset of E . Show that the application

Φ : P (E ) −→A

B 7−→ ⋃
B∈B

B

is injective.

Remark. This exercise proves that there is no countably infinite σ-algebra (as the powerset of any set
cannot be countably infinite).

Exercise 1.1.8. Let (Ω,A ,µ) be a measured space. We write

Nµ :=
{

N ⊆Ω : ∃B ∈A , N ⊆ B and µ(B) = 0
}

for the set of µ-negligible subsets ofΩ. Recall also the completion of A w.r.t. µ:

Aµ :=
{

A ⊆Ω : ∃(E ,F ) ∈A 2, E ⊆ A ⊆ F and µ(F \ E) = 0
}

.

It is known that Aµ ⊇A is still a σ-algebra onΩ.

Show that Aµ = {A ⊆Ω : ∃(E , N ) ∈A ×Nµ, A = E ∪N }.
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B. Dadoun 1.1. MEASURE THEORY

Exercise 1.1.9. Let (Ω,A ,µ) be a measure space and fn : Ω→ [−∞,∞], n ∈ N, be a sequence of
measurable functions such that

f (ω) := lim
n→∞ fn(ω)

exists for µ-almost every ω ∈Ω. We denote by D the domain of the function f .

1. Recall briefly why D ∈A and f : D → [−∞,∞] is measurable.

2. Recall what “µ-almost every” means in general, and here in terms ofΩ\ D .

3. We suppose that fn > 0 for all n ∈N, and that the limit

L := lim
n→∞

ˆ
fn dµ

exists in [0,∞).

a) What can you say about

ˆ
f dµ? Does it exist, is it finite? What if L = 0?

b) Show with the help of a counterexample that in general,

ˆ
fn dµ 6−→

ˆ
f dµ.

c) What additional sufficient condition on ( fn) would imply

ˆ
fn dµ−→

ˆ
f dµ?

4. We no longer make the assumptions of Question 3, and suppose instead that fn is integrable for
every n ∈N.

a) Show with the help of a counterexample that f is not necessarily integrable.

b) What additional sufficient condition on the sequence ( fn) would guarantee both the inte-

grability of f and the convergence

ˆ
fn dµ−→

ˆ
f dµ?

Exercise 1.1.10. Let λ2 denote the Lebesgue measure on (R2,B(R2)), and

D := {(s, s) : s ∈ (0,1)}, E := {(s, s + t ) : s, t ∈ (0,1)}.

Justify that D,E ∈B(R2) and use the translation invariance of λ2 to show that

1. λ2(D) = 0,

2. λ2(E) = 1.

Exercise 1.1.11 (True or false?). Letλ denote the Lebesgue measure on (R,B(R)). Prove or disprove
(with a counterexample) the following statements:

1. Let A ∈B(R).

a) If B ⊆ A then B ∈B(R).

b) If λ(A) =∞ then A is an unbounded set.
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c) If λ(A) <∞ then A is a bounded set.

d) If λ(A) = 0 then A is a bounded set.

e) If A is an open set then λ(A) > 0.

f) If λ(A∩ (0,1)) = 1 then A∩ (0,1) is dense in (0,1).

g) If A∩ (0,1) is dense in (0,1) then λ(A∩ (0,1)) > 0.

h) If λ(A) > 0 then A has a non-empty interior.

2. (In the following statements, measurability is meant w.r.t. the Borel σ-field.)

a) If f : R→R is differentiable, then f ′ is measurable.

b) If f1, f2, . . . : R→ R are measurable functions, then the set B := {x ∈R : limn→∞ fn(x) exists}
is measurable.

c) If f : [0,1] → R is such that {x ∈ [0,1] : f (x) = c} is measurable for all c ∈ R, then f is mea-
surable.

Exercise 1.1.12. Let λn denote the Lebesgue measure on (Rn ,B(Rn)). Show that for any hyperplane
H ⊂Rn , λn(H) = 0.

Hint. Show first λn(H0) = 0 for the hyperplane H0 := {(x1, . . . , xn)∈Rn : xn = 0}.

Exercise 1.1.13. Let (Ω,A ,µ) be a measure space and f : Ω→ [−∞,∞].

1. We suppose that f ∈ L1(Ω,A ,µ). Show that | f (ω)| <∞ for µ-a.e. ω ∈Ω.

2. We suppose that there is a sequence fn , n ∈N, converging to f in L1(Ω,A ,µ). Show that there is
a subsequence ( fnk ) of ( fn) converging to f µ-a.e., that is

lim
k→∞

fnk (ω) = f (ω)

for µ-a.e. ω ∈Ω.

Exercise 1.1.14. Let a ∈Cwith |a| < 1. Show that the two sums

∞∑
n=1

an

1−a2n
and

∞∑
m=1

a2m−1

1−a2m−1

are well defined and equal.
Hint. Introduce fn,m := an(2m−1) for m,n ∈N and apply Fubini’s theorem.

Exercise 1.1.15. Let (Ω,A ,µ) be a measure space.

1. Let n ∈N and f1, . . . , fn ∈ Ln(Ω,A ,µ). Show that

‖ f1 · · · fn‖1 6
n∏

i=1
‖ fi‖n .

Hint. Proceed by induction and recall Hölder’s inequality.
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B. Dadoun 1.1. MEASURE THEORY

2. We suppose here that µ = P is a probability measure (i.e, P(Ω) = 1). Show that for every finite
family {A1, . . . , An} ⊆A of events onΩ,

P(A1 ∩·· ·∩ An)6
[
P(A1) · · ·P(An)

]1/n .

Remark. By comparison between arithmetic and geometric means, this inequality is sharper
than the (trivial) inequality

P(A1 ∩·· ·∩ An)6
P(A1)+·· ·+P(An)

n
.

Exercise 1.1.16. Let (Ω,A ,µ) be a measure space. We suppose that there exists a measurable func-
tion f : Ω→ (0,∞) such that f and 1/ f are integrable (w.r.t. µ). Prove that µ is finite.

Exercise 1.1.17. Let (Ω,A ,µ) be a σ-finite measure space and f : Ω → [0,∞] be a measurable
function. Let Et := {ω ∈Ω : f (ω) > t } for each t > 0. Prove that

ˆ
Ω

f dµ=
ˆ

(0,∞)
µ(Et )dλ1(t ).

Exercise 1.1.18.

1. Compute the double integral Ï
(0,∞)2

dλ2(x, y)

(1+ y)(1+ y x2)
.

2. Deduce that ˆ
(0,∞)

log x

x2 −1
dλ1(x) = π2

4
.

Hint. Observe that
1

(1+ y)(1+x2 y)
= 1

x2 −1

(
x2

1+ y x2 − 1

1+ y

)
.

3. Show that ˆ
(0,1)

log x

x2 −1
dλ1(x) = π2

8
.

Exercise 1.1.19. Let f : R2 → [0,∞) be a measurable function, and

I :=
Ï

(0,1)2

f
(√

−2logu cos(2πv),
√

−2logu sin(2πv)
)

dλ2(u, v).

Show that

I =
Ï
R2

f (x, y)
e− x2+y2

2

(
p

2π)2
dλ2(x, y).

Exercise 1.1.20.
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1. Let t > 0. Show thatˆ
(0,t )

sin x

x
dλ1(x) =

ˆ
(0,∞)

(ˆ
(0,t )

e−x y sin x dλ1(x)

)
dλ1(y).

2. Deduce that ˆ
(0,t )

sin x

x
dλ1(x) =

ˆ
(0,∞)

1−e−t y (y sin t +cos t )

1+ y2
dλ1(y)

for all t > 0, and conclude that

lim
t→∞

ˆ
(0,t )

sin x

x
dλ1(x) = π

2
.

Hint. Apply (properly!) the dominated convergence theorem.

3. Is the function x 7→ sin x

x
Lebesgue-integrable on (0,∞)?

Exercise 1.1.21. Let (Ω,A ,µ) be a measure space and f : Ω→ R be a measurable function. For
p ∈ [1,∞], we set ‖ f ‖p :=∞ if f ∉ Lp (Ω,A ,µ).

1. Let 16 p < q 6∞ and suppose for this question only that µ(Ω) <∞. Show that

‖ f ‖p 6µ(Ω)
1
p − 1

q ‖ f ‖q

(with the convention 1/∞= 0).

Remark. We get Lq (Ω,A ,µ) ⊂ Lp (Ω,A ,µ) (under the above conditions).

2. Suppose that f ∈ Lr (Ω,A ,µ) for some 16 r <∞. Prove that

lim
p→∞‖ f ‖p = ‖ f ‖∞.

Hint. Show liminf
p→∞ ‖ f ‖p > ‖ f ‖∞ using Chebyshev’s inequality.

Exercise 1.1.22. Suppose that (Ω,A ) := (Z,P (Z)) and µ is the counting measure on Z and consider
the sequence space `p := Lp (Ω,A ,µ) for p ∈ [1,∞]. As above, we set ‖ f ‖p :=∞ if f ∉ `p . Show that

‖ f ‖q 6 ‖ f ‖p

whenever 16 p < q 6∞. In particular there is the inclusion `p ⊂ `q .

Exercise 1.1.23. Let p 6= q in [1,∞]. Prove that Lp (R) \ Lq (R) 6= ;.

Exercise 1.1.24 (Riesz–Scheffé’s lemma). Let (Ω,A ,µ) be a measure space, and f , f1, f2, . . . ∈ Lp (Ω)
with p ∈ [1,∞). We suppose that, as n →∞, fn(ω) → f (ω) for µ-a.e. ω ∈Ω and that ‖ fn‖p →‖ f ‖p . Let
sign: R→ {−1,1} denote a function such that |x| = (sign x)x for all x ∈R, and write

f ∗
n := fn1{| fn |6| f |} + (sign fn)| f |1{| fn |>| f |}

for every n ∈N.
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1. Show that ‖ f ∗
n − f ‖p → 0 as n →∞.

2. Show that ‖ fn − f ∗
n ‖p → 0 as n →∞. Conclude that fn → f in Lp (Ω,A ,µ).

Hint. Use the convexity inequality (y −x)p 6 y p −xp for 06 x 6 y .

Exercise 1.1.25. If f : R→ R is measurable and h ∈ R, we define τh f : x 7→ f (x +h) “the translation
of f by h” which is obviously also measurable. Let 1 6 p < q 6∞ such that 1/p +1/q = 1, f ∈ Lp (R)
and g ∈ Lq (R). Recall that the convolution f ? g of f and g is given by

f ? g (x) :=
ˆ
R

f (y)g (x − y)λ1(dy), λ1-a.e. (?)

1. Show that τh f → f in Lp (R) as h → 0.

Hint. Approximate f smoothly; note that p <∞.

2. In the special case p = 1 (so q =∞), show that the definition in (?) is actually valid everywhere
and makes f ? g be a bounded and uniformly continuous function.

Exercise 1.1.26. Let λ denote the Lebesgue measure on (R,B(R)). Recall that, by translation invari-
ance of λ, for any E ∈B(R) with λ(E) > 0 the set

E −E := {x − y : x, y ∈ E }

contains some open interval centered at 0: ∃ε > 0, (−ε,ε) ⊂ E −E . In this exercise we suppose that
f : R→R is a measurable function such that

∀(x, y) ∈R2, f (x + y) = f (x)+ f (y). (?)

1. For k ∈N, justify that the set Ek := {x ∈R : | f (x)| < k} is in B(R) and, by observing the identity⋃
k∈N

↑ Ek =R,

show that there exist k ∈N and ε> 0 such that: |x| < ε =⇒ | f (x)| < 2k.

2. Deduce that f (x) → 0 as x → 0.

3. Conclude that f (x) = f (1)x for all x ∈R.

Hint. Use the density ofQ in R.

1.2 Linear differential equations

Exercise 1.2.1. Solve (over R) the following systems of linear differential equations:

1.


x ′ = x + z

y ′ =−y − z

z ′ = 2y + z

9
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2.

{
x ′ = 2x − y +4t

y ′ = x +e−t

3.

{
x ′ = cos(t )x − sin(t )y

y ′ = sin(t )x +cos(t )y

Hint. Rewrite the system as a first order differential equation in z := x + i y .

Exercise 1.2.2. We consider the following Cauchy problem.

(1+ t 2)x ′′− t (1− t 2)x ′+ (1− t 2)x = 0, (E)

x(0) = 1, x ′(0) = 1.

1. Show that the functions t 7→ At , A ∈R, are solutions to (E) but that none of them is a solution to
the Cauchy problem.

2. Find all solutions to (E) by letting the constant A vary with t .

Hint: −2+ t 2 + t 4

t (1+ t 2)
= 2t

1+ t 2
− t − 2

t
.

Now, solve the Cauchy problem.

Exercise 1.2.3. The goal is to find all twice differentiable functions f : R→R such that f (0) = 1 and

∀(s, t ) ∈R2, f (s + t )+ f (s − t ) = 2 f (s) f (t ).

Let f be such a function.

1. Show that f is an even function.

2. Show that f is a solution to x ′′ =λx for some constant λ ∈R.

3. Conclude.

Exercise 1.2.4. Let A(t ) := (ai , j (t )) ∈ Rn×n be a matrix, and X1(t ), . . . , Xn(t ) ∈ Rn be n solutions to
the linear differential equation

X ′(t ) = A(t )X (t ). (F)

We define

W (t ) :=
[

X1(t )
∣∣∣ X2(t )

∣∣∣ · · · ∣∣∣ Xn(t )
]
∈Rn×n

and

w(t ) := det(W (t )) = det(W1(t ), . . . ,Wn(t )),

where W1(t ), . . . ,Wn(t ) are the rows of the matrix W (t ).

10
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1. Recalling that the determinant is a multilinear form, prove that

w ′(t ) =
n∑

i=1
det

(
W1(t ), . . . ,Wi−1(t ),W ′

i (t ),Wi+1(t ), . . . ,Wn(t )
)
.

Check also that W ′
i (t ) =∑n

j=1 ai , j (t )W j (t ) for every i = 1, . . . ,n.

2. Recalling that the determinant is an alternating form, deduce that w is a solution to the homo-
geneous, first order, linear differential equation

y ′ = tr(A(t )) y.

3. Prove that either (∀t ∈R, w(t ) = 0) or (∀t ∈R, w(t ) 6= 0), and that the latter happens if and only
if (X1, X2, . . . , Xn) is a basis of solutions to (F).

Hint. Recall the isomorphism X 7→ X (0) from the solutions to (F) onto Rn .

11
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PROBABILITY

2.1 Combinatorial probability

Exercise 2.1.1. In an urn, there are 17 green, 5 blue, and 11 red, indistinguishable balls. Answer the
following questions (specify in each case the probability space):

1. We pick two balls simultaneously (without replacement). What is the probability that none of
these balls is red?

2. We pick three balls one after the other, with replacement. What is the probability that at most
two of these balls are green?

Exercise 2.1.2. We consider a 5-card hand from a traditional deck of 52 cards. Specify the probability
space and find the probability that the hand contains...

1. five cards of the same suit;

2. four cards of the same rank;

3. five cards of sequential rank (the aces having both the lowest and highest ranks);

4. three cards of the same rank and two other cards of another rank.

Exercise 2.1.3. Let X be a Poisson random variable with parameter λ> 0, that is

P(X = k) = e−λλ
k

k !
, for k = 0,1,2, . . .

1. Show that E[X ] =λ.

2. Show that Var(X ) =λ.

13
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Exercise 2.1.4. Let n ∈N, x ∈ [0,1] and Xn be a random variable having the binomial distribution
with parameter (n, p), that is

P(Xn = k) =
(

n

k

)
pk (1−p)n−k , k = 0,1,2, . . . ,n.

1. Show that E[Xn] = np.

2. Show that Var(Xn) = np(1−p).

Exercise 2.1.5. Show that C := {[a,b) : a,b ∈Q} generates the Borel σ-algebra B(R) of R.

Exercise 2.1.6. Let C := {Ci }16i6n be a finite partition of Ω, i.e, Ω = ⋃n
i=1 Ci with C1, . . . ,Cn all non-

empty and pairwise disjoint. Describe σ(C ), the smallest σ-algebra containing C .

Exercise 2.1.7. Let (Ω,A ,P ) be a probability space.

1. Let A,B be two events, and its symmetric difference A∆B := (A ∪B) \ (A ∩B). Prove using the
axioms of probability that

|P (A)−P (B)|6 P (A∆B).

2. Let An ,n > 1, be a sequence of events with P (An) = 1 for every n. Prove that

P

( ⋂
n>1

An

)
= 1.

Exercise 2.1.8. Let X be a random variable with values inN. Prove that

E[X ] =
∞∑
`=1

P(X > `)

(with the convention that E[X ] =∞ in case the first moment of X does not exist).

2.2 Distributions, independence

Exercise 2.2.1. Suppose a distribution function F is given by

F (x) = 1

4
1[0,∞)(x)+ 1

2
1[1,∞)(x)+ 1

4
1[2,∞)(x).

Let P be the probability measure, P ((−∞, x]) := F (x), x ∈R. Find the probability of:

A = (−12,12), B = (−12,32), C = (23,52), D = [0,2), E = (3,∞).

Exercise 2.2.2. For each point U 6= N on the circle with center C (0;1/2) and diameter 1 below, the
line (NU ) intersects the real axis at a unique point — we call X its abscissa:

14
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R

×
C

•N

•
S (0;0)

•U

Θ

•
X

We suppose that U has a uniform distribution, namely we consider that the measureΘ of the oriented
angle (

#  —
C S;

#   —
CU ) is uniformly distributed on (−π,π).

Show that X has the standard Cauchy distribution.

Exercise 2.2.3. Let X ,Y be two independent Bernoulli(1/2) r.v. and Z := 1
2

(
1+ (−1)X+Y

)
.

1. Show that Z is a Bernoulli(1/2) r.v. which is independent of X and of Y .

2. Check that Z is not independent of (X ,Y ).

Exercise 2.2.4.

1. Let X1, X2, . . . be identically distributed real r.v. and N be a N0-valued r.v. We suppose N and X`

independent for each ` ∈N, and that E[|X1|] <∞, E[N ] <∞. Let the random sum

S(ω) :=
N (ω)∑
`=1

X`(ω), ω ∈Ω.

Show that S is integrable and E[S] = E[N ]E[X1].

Hint. Recall Exercise 2.1.8.

2. With one initial bet of 50 CHF, you are allowed to roll two fair traditional dice. Each time the sum
of the two faces up is greater than or equal to 7, you win either 30 CHF or 40 CHF depending on
the result of a fair coin toss, and moreover you can roll the dice again. If however the sum is less
than 7, then the game is over. Is this game favorable to you?

Exercise 2.2.5. For any real r.v. X , let FX denote its cumulative distribution function.

1. Check that lim
t→−∞FX (t ) = 0 and lim

t→∞FX (t ) = 1.

2. Let X and Y be two independent r.v. having the exponential distribution with rates λ > 0 and
µ> 0 respectively, e.g.

FX (t ) =
{

1−e−λt , if t > 0,

0, otherwise.

a) Let θ > 0. Show that θX has the exponential distribution with rate λ/θ.

b) Show that Z := min(X ,Y ) has the exponential distribution with rate λ+µ.
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3. Let X , X1, X2, . . . be i.i.d. real r.v. We suppose that for every n ∈N, the r.v. Zn := n min(X1, . . . , Xn)
has the same law as X and we note S := 1−FX .

a) Show that S(nt ) = S(t )n for every n ∈N and every t ∈R.

b) Deduce that P(X < 0) = 0, and S(r ) = S(1)r for every rational r > 0.

c) Show that if S(1) = 0, then P(X = 0) = 1.

d) Assume now S(1) 6= 0. Show then that 0 < S(1) < 1, and conclude that X has the exponential
distribution with rate log(1/S(1)).

Exercise 2.2.6. Let A and B be two points picked independently and uniformly inside the unit disk
D := D(0;1). Write Z := |AB | for the distance between A and B . Find the probability that the disk
D(A, Z ) with center A and radius Z lies inside D .

Exercise 2.2.7. Let X be a geometric random variable with parameter p ∈ [0,1], that is

P(X = k) = (1−p)k−1p, k = 1,2, . . .

1. Compute the c.d.f. of X .

2. Let q ∈ [0,1] and Y be a Geometric(q) random variable independent of X . Show that Z :=
min(X ,Y ) has the geometric distribution with parameter 1− (1−p)(1−q).

Exercise 2.2.8.

1. Give an example of c.d.f. having an infinite number of discontinuities.

2. Show that every c.d.f. has at most countably many discontinuities.

3. Let X ,Y be random variables with c.d.f. F,G respectively, and B be a Bernoulli(1/2) r.v. indepen-
dent of X and of Y . Compute the c.d.f. of Z := B X + (1−B)Y .

Exercise 2.2.9 (True or false?). Prove, or disprove (by giving a counterexample), briefly the following
statements. We consider real r.v. on some general probability space (Ω,A ,P).

1. About the laws of random variables.

a) For every measurable function f : R→R,

b) If P(X = t ) =P(Y = t ) for all t ∈R, then P(X = Y ) = 1.

c) If P(X 6 t ) =P(Y 6 t ) for all t ∈R, then P(X = Y ) = 1.

d) If P(X = t ) =P(Y = t ) for all t ∈R, then X and Y have the same law.

e) If X and Y have same law and X > 0 a.s., then Y > 0 a.s.

f) If X and Y have same law, then P(X < Y ) =P(X > Y ).

g) If X and Y have same law and X ∈ L1(P), then Y ∈ L1(P) and E[X ] = E[Y ].

h) If X and Y have same law, then X +Z and Y +Z also have same law.

16

http://benjamin.dadoun.free.fr/afewexercises.pdf?c
mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


B. Dadoun 2.3. COMPUTING DISTRIBUTIONS

2. About independence.

a) If E[X Y ] = E[X ]E[Y ], then X and Y are independent.

b) If X and Y are independent, then P(X = Y ) = 0.

c) If X and Y are independent, then P(X = Y ) < 1.

d) If Z is independent of both X and Y , then Z is independent of (X ,Y ).

e) If X ,Y are independent, then so are f (X ), g (Y ) for f , g : R→Rmeasurable.

2.3 Computing distributions

Exercise 2.3.1. Let p ∈ (0,1) and X1, X2, . . . ,Y1,Y2, . . . be i.i.d. Bernoulli(p) r.v. We define

N := min{n ∈N : Xn 6= Yn}

and set “Z := XN ”, i.e Z =
∞∑

n=1
1{N=n}Xn .

1. Check that N > 1 has the geometric distribution with parameter 2p(1−p).

2. Show that Z has the Bernoulli(1/2) distribution.

3. Deduce a way to simulate a fair coin toss using a potentially unfair coin.

Exercise 2.3.2. Let X be uniformly distributed on [−1,1]. Find the density of Y := X k for positive
integers k.

Exercise 2.3.3. Let X have distribution function F . What is the distribution function of Y := |X |?
When X admits a continuous density fX , show that Y also admits a density fY , and express fY in
terms of fX .

Exercise 2.3.4. LetΘ be uniformly distributed on the interval (−π
2 , π2 ).

1. Find a continuous density function for C := tanΘ.

2. Find a density function for A := (sinΘ)2 which is continuous on (0,1).

3. Identify the law of C 2 − AC 2 + A.

Exercise 2.3.5. Let X be Cauchy with parameters α,1. Let Y := a/X with a 6= 0. Show that Y is also
a Cauchy r.v. and find its parameters.

Exercise 2.3.6. Let X ,Y be two independent N (0,1) random variables. Find a density function for
Z := X 2/(X 2 +Y 2) which is continuous on (0,1).

Exercise 2.3.7. Let X be positive with a density f . Find a density for Y := 1/(X +1).
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Exercise 2.3.8. Let X , X1, X2, . . . be i.i.d. real r.v. with cumulative distribution function F and having
a density function f . We set

N := inf{k ∈N : Xk > X }.

1. Let k ∈N and t ∈R. Show that

P(N = k, X 6 t ) =
ˆ t

−∞
F (x)k−1(1−F (x)

)
f (x)dx.

2. Conclude that

P(N = k) = 1

k
− 1

k +1
, k ∈N.

Exercise 2.3.9. Let X be a real random variable such that:

FX (t ) :=P(X 6 t ) =



0, if t <−3,

1/3, if −36 t <−2,

7/12, if −26 t < 0,

3/4, if 06 t < 4,

1, if 46 t .

Compute E[X ] and Var(X ).

Exercise 2.3.10. Let X , X1, X2, . . . be i.i.d. real r.v. with distribution function F and having a density
function f . We set

N := inf{k ∈N : Xk > X }.

1. Let k ∈N and t ∈R. Show that

P(N = k, X 6 t ) =
ˆ t

−∞
F (x)k−1(1−F (x)) f (x)dx.

2. Conclude that

P(N = k) = 1

k
− 1

k +1
, k ∈N.

Exercise 2.3.11. Let U ,V be two independent standard uniform r.v. We set

X :=U 2 +V 2, and Y :=U 2/X .

Compute

P(Y 6 t | X 6 1) := P(Y 6 t , X 6 1)

P(X 6 1)
, t ∈R.

Exercise 2.3.12. Let X be a real r.v. in L1(Ω,A ,P).

18

http://benjamin.dadoun.free.fr/afewexercises.pdf?c
mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


B. Dadoun 2.3. COMPUTING DISTRIBUTIONS

1. Let a,b be two real numbers. Show that

E[|X −b|]−E[|X −a|] =
ˆ b

a

[
P(X 6 t )−P(X > t )

]
dt .

Hint. Observe that |b −x|− |x −a| =
ˆ b

a

(
1{x6t } −1{x>t }

)
dt . Use Fubini’s theorem.

2. We call m ∈R a median of a real r.v. Y if P(Y 6m)> 1/2 and P(Y >m)> 1/2.

a) Show that every real random variable admits a median. Is there uniqueness?

b) Let m be a median of X . Deduce from Question 1 that

E[|X −m|] = inf
c∈R

E[|X − c|].

Conclude that |E[X ]−m|6σ where σ2 := Var(X ).

Exercise 2.3.13. For any distribution function F , we define

F−1(u) := inf{t ∈R : F (t ) > u}, u ∈ (0,1),

the right-continuous inverse of F .

1. Compute F−1 when F is the standard exponential distribution.

2. Show that for every t ∈R and u ∈ (0,1), u < F (t ) =⇒ F−1(u)6 t =⇒ u 6 F (t ).

3. Let U be uniformly distributed on (0,1).

a) Show that blog1/2Uc has the Geometric(1/2) distribution (with b·c = integer part).

b) More generally, show that F−1(U ) has law F .

4. Show that F−1 is non-decreasing.

5. Show that F−1 is right-continuous.

Consequently, the set (0,1) \C (F−1) of discontinuity points of F−1 is at most countable.

6. Let F,F1,F2, . . . be distribution functions such that ∀t ∈ C (F ), Fn(t ) → F (t ). Show that ∀u ∈
C (F−1), F−1

n (u) → F−1(u).

7. Consider a convergence in distribution Xn =⇒ X of real r.v., and let U be a standard uniform r.v.
Show that there exist Y and Yn , n ∈N, measurable w.r.t. U such that Y ∼ X , Yn ∼ Xn , and Yn → Y
a.s.

Exercise 2.3.14. Recall that a r.v. X has a continuous distribution if x 7→P(X 6 x) is continuous.

1. Show that X has a continuous distribution if and only if P(X = x) = 0 for all x ∈R.
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2. Show that if X has a continuous distribution and Y is any random variable independent of X ,
then X +Y has a continuous distribution.

3. Let f : R→ [0,∞) measurable. We suppose that (the distribution of) X has density f , that is

P(X ∈ A) =
ˆ

A
f (x)dx

for every Borel set A. Show that:

a) f is integrable on R.

b) If P(X ∈ A) > 0, then A has positive Lebesgue measure.

c) X has a continuous distribution.

d) If X has another density g , then f = g almost everywhere.

Exercise 2.3.15. Let L be the uniform distribution on E := (0,1), and P be the Arcsine distribution:

P((0, t ]) =: F (t ) = 1

2
+ arcsin(2t −1)

π
, t ∈ E .

Define X (s, t ) := t1{s6t } + (1− t )1{s>t } for s, t ∈ E and writeQ for the law of X under L⊗P.

1. Show that for every bounded, measurable function f : E →R,

ˆ
E

f (t )Q(dt ) =
ˆ

E
2t f (t )P(dt ).

Deduce thatQ admits w.r.t. P the Radon-Nikodym derivative

dQ

dP
= 2t , t ∈ E .

2. Conclude that X has density

t 7→ 2t

π
p

t (1− t )
, t ∈ E .

2.4 Convergence of random variables, limit theorems

Exercise 2.4.1. Let L0 denote the space of real r.v. defined on (Ω,P).

1. Show that
d(X ,Y ) := E[1∧|X −Y |]

is a distance on L0 such that

Xn
P−−−−→

n→∞ X ⇐⇒ d(Xn , X ) −−−−→
n→∞ 0.
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2. Let (Xn,k : n,k > 1) be elements in L0, and K : Ω→N be an independent r.v. We suppose that for
each k ∈N,

Xn,k
P−−−−→

n→∞ 0.

Show that

K∑
k=1

Xn,k
P−−−−→

n→∞ 0.

Exercise 2.4.2. We have seen in Exercise 2.4.1 that the convergence in probability in the space
L0(Ω,A ,P) of real r.v. is metrized by

d(X ,Y ) := E[1∧|X −Y |].

0. Let (Xn)n∈N be a Cauchy sequence in L0(Ω,A ,P):

∀ε> 0, ∃k ∈N, ∀m > k, d(Xm , Xk ) 6 ε.

a) Construct an increasing sequence (kn)n>0 of positive integers such that

P

(∣∣Xkn+1 −Xkn

∣∣> 1

2n

)
6

1

2n
.

b) Show that almost surely, there exists N > 0 sufficiently large such that

∀n > N ,
∣∣Xkn+1 −Xkn

∣∣6 1

2n
.

Deduce that the sequence (Xkn )n>0 converges almost surely.

1. Prove that the space L0(Ω,A ,P) is complete.

2. Prove that the space Lp (Ω,A ,P), p > 1, is complete.

Exercise 2.4.3. For each p ∈ (0,1), let B (p)
k ,k ∈N, be i.i.d. Bernoulli(p) r.v. We set

X (p) := lim
n→∞X (p)

n , where X (p)
n :=

n∑
k=1

B (p)
k 2−k ,

and

A(p) :=
{ ∞∑

k=1
bk 2−k

∣∣∣ bk ∈ {0,1}, and lim
k→∞

b1 +·· ·+bk

k
= p

}
⊂ (0,1).

1. Show that X (p) ∈ A(p) almost surely.

2. Show that for every k,n ∈ N0, P(k 6 2n X (p) < k + 1) 6 θn , with θ := max(p,1 − p). Deduce
that X (p) has a continuous distribution. We denote it µ(p).
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3. In this question we consider p = 1/2.

a) Let U be a standard uniform r.v. Compute the characteristic functionΦU .

b) Show that for every t ∈R,

ΦXn (t ) = exp
(
i t/2− i 2−(n+1)t

) sin(t/2)

2n sin
(
2−(n+1)t

) ,

and deduce that µ(1/2) is the standard uniform distribution.

Hint. Use that (1+e iθ)sin(θ/2) = e iθ/2 sinθ to obtain a telescopic product.

4. We now consider p 6= 1/2.

a) Show that µ(p)(A(p)) = 1 and µ(1/2)(A(p)) = 0.

b) Deduce that µ(p) has no density function.

Exercise 2.4.4. Let µ be a probability distribution on R having a second moment σ2 <∞ such that,
if X and Y are independent with law µ, then the law of (X +Y )/

p
2 is also µ. Show that µ=N (0,σ2).

Hint. Apply the central limit theorem to packs of 2n variables.

Exercise 2.4.5. Let Xn , n ∈N, be i.i.d. standard Poisson r.v., and Sn := X1 +·· ·+Xn .

Find the expression of P

(
Sn −np

n
6 0

)
, and deduce that lim

n→∞e−n
n∑

k=0

nk

k !
= 1

2
.

Exercise 2.4.6. Let X1, X2, . . . be i.i.d. real r.v. with Var(X1) = 1, E[X1] = 0, and

Sn := X1 +·· ·+Xn , n ∈N.

1. Using the central limit theorem, show that there exist p > 0 and n0 ∈N such that

∀n > n0, P(|Sn |>
p

n)> p.

2. Deduce that lim
n→∞E[|Sn |] =∞.

Exercise 2.4.7. For each n ∈ N, let Xn be a N (µn ,σ2
n) r.v. (µn ∈ R, σ2

n > 0). We suppose that Xn

converges in distribution to some r.v. X .

1. Using characteristic functions, show that (σ2
n)n∈N converges to some σ2 > 0.

2. Let S(t ) :=P(X > t ), t ∈R.

a) Justify that S is continuous at some t0 > 0 large enough, with S(t0) < 1/4.

b) Deduce that (µn)n∈N is bounded from above (more precisely, limsup
n→∞

µn 6 t0).

c) Deduce that (µn)n∈N is bounded.

3. Conclude that X has a normal distribution.
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Exercise 2.4.8. We suppose that X , X1, X2, . . . are real r.v. such that Xn converges to X in distribution.

1. Let f : R→R be a nonnegative continuous function. Show that

liminf
n→∞ E[ f (Xn)]> E[ f (X )].

Hint. Apply Fatou’s lemma/monotone convergence theorem to some ( fk (X ))k∈N.

2. Deduce that if (E[|Xn |])n∈N is bounded, then E[|X |] <∞.

3. Deduce that if Xn > 0 a.s. for every n ∈N, then X > 0 a.s.

Exercise 2.4.9. Let X1, X2, . . . be i.i.d. centered, square-integrable r.v. Show that

liminf
n→∞ P(|X1 +·· ·+Xn |>

p
n) > 0.

Exercise 2.4.10. Let λ> 0, and for n >λ, Xn be a random variable having the binomial distribution
with parameter (n,λ/n), that is

P(Xn = k) =
(

n

k

)(
λ

n

)k (
1− λ

n

)n−k

, k = 0,1,2, . . . ,n.

Compute lim
n→∞P(Xn = k). What do you recognize?

Exercise 2.4.11. Let f : [0,1] → R be a continuous function, x ∈ [0,1] and Xn := Xn(x) be a ran-
dom variable having the binomial distribution with parameter (n, x); see Exercise 2.1.4. We define
Yn := f (Xn/n), so that Yn is a discrete random variable taking values in the set Y := { f (k/n) : k =
0,1,2, . . . ,n}.

1. Let m ∈N. Recall why there exist C > 0 and δm > 0 such that

∀t ∈ [0,1], | f (t )|6C ,

and ∀(s, t ) ∈ [0,1]2 with |t − s|6 δm , | f (t )− f (s)|6 1

m
.

2. Check that for every δ> 0,

E[|Yn − f (x)|]6 2C P(|Xn −E[Xn]| > nδ)+E[| f (Xn/n)− f (x)|1{|Xn−nx|6nδ}],

then deduce that for every m ∈N,

E[|Yn − f (x)|]6 2C
x(1−x)

nδ2
m

+ 1

m
.

Hint. Recall E[Xn], Var(Xn) (see Exercise 2.1.4), and apply Chebyshev’s inequality.

3. We define Bn : x 7→ Bn(x) := E[Yn] = E[ f (Xn(x)/n)].
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a) Check that Bn is a polynomial function in x ∈ [0,1].

b) Conclude that
sup

x∈[0,1]
|Bn(x)− f (x)| −−−−→

n→∞ 0.

Conclusion. Continuous functions defined on a compact interval can be (uniformly) approximated
by polynomials!

Exercise 2.4.12. Let (Xn)n∈N be a sequence of i.i.d. r.v. with E[|X1|] <∞, µ := E[X1], and

Sn := X1 +·· ·+Xn , n ∈N.

1. Show that if µ> 0 (resp. µ< 0), then Sn −→∞ (resp. −∞) almost surely.

2. We suppose here that P(X1 = 1) =P(X1 =−1) = 1/2.

a) Let m > 2k +1 in N. Show that Sn+m −Sn = m infinitely often, almost surely. Deduce that
limsup |Sn | > k almost surely.

b) Conclude that limsup |Sn | =∞ a.s.

Exercise 2.4.13. Let (Xn)n∈N be a sequence of i.i.d. real r.v. with distribution function F such that
F (t )/t −→λ as t → 0+, for some λ> 0. Let Zn := n min(X1, . . . , Xn), n ∈N.

1. Check the following facts:

a) For every n ∈N, Zn > 0 almost surely.

b) For every t > 0, P(Zn > t ) −→ e−λt as n →∞.

c) For every ε> 0, there is nXn 6 ε infinitely often, almost surely.

2. Conclude that liminf Zn = 0 a.s., but that (Zn)n∈N does not converge a.s.

Exercise 2.4.14. For each k ∈N, let (X (k)
n )n∈N be a sequence of real r.v. converging to 0 in probability,

as n →∞. Define, for k,n ∈N,

Y (k)
n :=

k∑
i=1

X (i )
n ,

and, for ε> 0 arbitrary, fn(k) :=P
(∣∣∣Y (k)

n

∣∣∣> ε).

1. Let k ∈N. Show that fn(k) −→ 0 (Y (k)
n converges to 0 in probability), as n →∞.

2. Let K be aN-valued r.v. independent of (X (k)
n ), and Y (K )

n (ω) := Y (K (ω))
n (ω),ω ∈Ω.

a) Show that P(|Y (K )
n | > ε) = E[ fn(K )].

b) Conclude that Y (K )
n converges to 0 in probability, as n →∞.

Exercise 2.4.15. Let Xn , n > 1, be centered with variance σ2
n , such that σ2

n → 0 as n → ∞. Show
that Xn converges to 0 in L2(P) (and in probability).
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Exercise 2.4.16. Let Xn , n > 1, be i.i.d. centered random variables with variance σ2 <∞. Show that
1
n

∑n
j=1 X j converges to 0 in L2(P) (and in probability).

Exercise 2.4.17. Let X j , j > 1, be i.i.d. with standard Laplace distribution (having common density
e−|x|/2). Show the convergence in distribution

p
n

∑n
j=1 X j∑n
j=1 X 2

j

D−−−−→
n→∞ Y ,

where Y is a N (0,1/2) Gaussian variable.
Hint. Use Slutsky’s lemma.

Exercise 2.4.18. Let X j , j > 1, be i.i.d. with mean 1 and varianceσ2 ∈ (0,∞). Define Sn :=∑n
j=1 X j , n ∈

N. Show the convergence in distribution

2

σ
(
√

Sn −p
n)

D−−−−→
n→∞ Y ,

where Y is a N (0,1) Gaussian variable.

Exercise 2.4.19. Let X j , j > 1, be i.i.d. with mean 0 and varianceσ2 ∈ (0,∞). Define Sn :=∑n
j=1 X j , n ∈

N. Show that Sn/σ
p

n does not converge in probability.

Exercise 2.4.20. Let X j , j > 1, be i.i.d. with mean 0 and variance σ2 <∞. Define Sn :=∑n
j=1 X j , n ∈

N. Show that

lim
n→∞E

[ |Sn |p
n

]
=

√
2

π
σ.

Exercise 2.4.21. Let q > 1 and (Xn)n∈N be a sequence of real r.v. bounded in Lq (P):

C := sup
n∈N

E[|Xn |q ] <∞.

1. Suppose that Xn converges almost surely to some r.v. X as n →∞.

a) Is X in Lq (P)?

b) Suppose q > 1 and 16 p < q . Does E[|Xn |p ] converge to E[|X |p ] as n →∞?

2. Same questions if the convergence Xn → X holds in probability.

3. Same questions if the convergence Xn → X holds in distribution.

Exercise 2.4.22. Let X , X1, . . . be random variables and g : R→ [0,∞) measurable. We suppose that

Xn
(d)−−−−→

n→∞ X , and Θ := sup
n>1

E[g (Xn)] <∞.

Show that for every continuous function f : R→Rwith f = o(g ) at ±∞, we have

lim
n→∞E[ f (Xn)] = E[ f (X )] in R.
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Exercise 2.4.23 (True or false?). Prove, or disprove (by giving a counterexample), briefly the follow-
ing statements. We consider real r.v. on some general probability space (Ω,A ,P).

1. If |Xn −X |→ 0 a.s., then E[|Xn −X |] → 0.

2. If Xn → X in probability and (E[X 2
n])n∈N is bounded, then E[|Xn −X |] → 0.

3. If Xn tends to 0 in probability, then so does (X1 +·· ·+Xn)/n.

4. If E[|Xn −X |] → 0, then |Xn −X |→ 0 a.s.

2.5 Gaussian vectors

Exercise 2.5.1. Let X := (X1, X2, X3) ∈ R3 be a centered random Gaussian vector such that E[X 2
i ] = 1

and E[Xi X j ] = 1/2 for 16 i 6= j 6 3.

1. Give the dispersion matrix and the characteristic function of X.

2. What is the law of X1 −X2 +2X3?

3. Does there exist a ∈R such that X1 +aX2 and X1 −X2 are independent?

4. Show that X admits a density and explicit it.

Exercise 2.5.2. Let a > 0, X be a N (0,1) random variable, and

Y :=
{

X , if |X | < a,

−X , if |X |> a.

1. Show that Y has the N (0,1) distribution.

2. Express E[X Y ] in terms of the density function f (x) := exp(−x2/2)/
p

2π of X .

3. Is (X ,Y ) a Gaussian random vector?

Exercise 2.5.3. Let n > 2 and X1, . . . , Xn be i.i.d. N (µ,σ2) r.v. Prove that the empirical mean and
variance

X̄n := 1

n

n∑
i=1

Xi and S2
n := 1

n

n∑
i=1

(Xi − X̄n)2

are independent.
Hint. Let X′ := (X1 − X̄n , . . . , Xn − X̄n). Check that X := (X̄n ,X′) ∈ Rn+1 is a Gaussian vector. Express its dispersion matrix

using the one of X′ and deduce that X̄n and X′ are independent.

Exercise 2.5.4. Let X1,X2, . . . be i.i.d. random vectors in R2. Apply the 2-dimensional CLT in the
following cases:

1. P(X1 = (−1,−1)) =P(X1 = (1,1)) = 1/2;

2. P(X1 = (1,−1)) =P(X1 = (1,1)) =P(X1 = (−1,−1))/2 = 1/4.
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Exercise 2.5.5. Let X1,X2, . . . be i.i.d. vectors in Rk having the same distribution as X := (ξ1,ξ1 +
ξ2, . . . ,ξ1+·· ·+ξk ), for ξ1, . . . ,ξk i.i.d. with P(ξ1 = 1) =P(ξ1 =−1) = 1/2. Show that (X1+·· ·+Xn)/

p
n has

a limiting distribution which one will describe in terms of a density function.

Exercise 2.5.6. Let ρ be in between −1 and 1, and µ j ,σ2
j , j = 1,2, be given. Construct Gaussian

variables X1, X2 with means µ1,µ2, variances σ2
1,σ2

2, and correlation ρ.

Exercise 2.5.7. Let (X ,Y ) be bivariate normal with correlation ρ and σ2
X = σ2

Y . Show that X and
Y −ρX are independent.

Exercise 2.5.8. Let X := (X1, X2, . . . , Xn) be a n-dimensional centered Gaussian vector. We suppose
that there exist k > 2 and 0 = i0 < ·· · < ik = n such that the covariance matrix Q of X is a block-diagonal
matrix consisting of k blocks Q1, . . . ,Qk , i.e,

Q =

Q1 (0)
. . .

(0) Qk

,

with respective sizes i1 − i0, . . . , ik − ik−1. Show that X j := (Xi j−1+1, . . . , Xi j ), 1 6 j 6 k, are independent
centered Gaussian vectors with respective covariance matrices Q j .

Exercise 2.5.9. Let X be Gaussian N (µ,Q) in Rn , A ∈Rn×n , b ∈Rn , and Y := AX+b.

1. Show that Y is still a Gaussian vector. Give its parameters in terms of Q, A,µ,b.

2. Show that Y is nondegenerate if and only if X is nondegenerate and A is invertible.

3. We suppose det(Q) 6= 0. Find A and b such that Y is standard N (0, I ).

Exercise 2.5.10. Let Y := (Y1, . . . ,Yn) be a nondegenerate Gaussian vector with covariance matrix Q,
X be some random variable with finite variance, and v := (v1, . . . , vn) ∈Rn . Show that

Var

(∑
i=1

vi Yi −X

)

is minimal for v =Q−1 u, where u := (u1, . . . ,un) is given by ui = Cov(Yi , X ), 16 i 6 n.

Exercise 2.5.11. Let (X ,Y ) be a nondegenerate 2-dimensional centered Gaussian vector, and

Z :=
{

X , if X 2 +Y 2 < 1,

−X , else.

Show that Z is Gaussian, Z ∼ X , but that (X ,Y , Z ) is not a Gaussian vector.
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2.6 Conditional expectations

Exercise 2.6.1. Let X ,Y be two independent Poisson variables with parametersλ,µ> 0 respectively.
We set N := X +Y .

1. Compute P(X = k | N = n) for k,n ∈Z+.

2. Deduce E[X | N = n] for n ∈Z+, and then E[X | N ].

3. Check that E[X ] = E[E[X | N ]].

Exercise 2.6.2. Let X ,Y be two independent exponential r.v. with parameters λ,µ> 0 respectively.
We set T := min(X ,Y ).

1. What is the law of T ?

2. Compute E[T | X ].

Hint. Go back to definitions. (Find E[T f (X )] for f : R→Rmeasurable bounded...)

3. Compute E[X | T ].

4. Check that E[E[T | X ]] = E[T ] and E[E[X | T ]] = E[X ].

Exercise 2.6.3. Let U ,V be two independent standard uniform r.v. on (0,1). Compute

E[(U −V )+ |U ].

Exercise 2.6.4. Let X ,Y ∈ L1(Ω,A ,P).

1. Show that if X = Y a.s., then E[X | Y ] = E[Y | X ] a.s.

2. Conversely, show that if E[X | Y ] = Y and E[Y | X ] = X a.s., then X = Y a.s.

Hint. You may only consider the case X ,Y ∈ L2(P) (show that E[(X −Y )2] = 0).

Exercise 2.6.5. Let X := (X1, . . . , Xd ) be a N (0,Γ) centered Gaussian vector in Rd . Compute E[〈λ,X〉 |
〈µ,X〉] forλ,µ ∈Rd (with 〈·, ·〉 the usual inner product in Rd ).

Exercise 2.6.6. Suppose (Bn) ∈A N is a partition ofΩ (that is,Ω=⋃
n>1 Bn with Bn 6= ; and Bn∩Bm =

; for n 6= m), and let B :=σ(Bn : n > 1). Show that for every X ∈ L1(Ω,A ,P),

E[X |B] =
∞∑

n=1
E[X | Bn]1Bn .

Exercise 2.6.7. Let (Ω,A ,P) be a probability space, B ⊆A be a sub-σ-field, and A ∈A be an event.
Show that the event B := {P(A |B) > 0} contains a.s. A (that is, P(A \ B) = 0).
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Exercise 2.6.8. Let X ∈ L2(Ω,A ,P) and B ⊆ A a sub-σ-field. We define the conditional variance
of X w.r.t. B by:

Var(X |B) := E[(X −E[X |B])2
∣∣ B

]
.

Prove the law of total variance:

Var(X ) = E[Var(X |B)
]+Var

(
E[X |B]

)
.

Exercise 2.6.9. Let X1, X2, . . . be i.i.d. r.v. in L1(P), and Sn := X1 +·· ·+Xn , n > 1.

1. Find E[X1 | X2], E[Sn | X1], and E[Sn | Sn−1].

2. Show that if (X , Z ) and (Y , Z ) have the same joint law, then for every f : R→Rwith f (X ) ∈ L1(P),
we have E[ f (X ) | Z ] = E[ f (Y ) | Z ]. Deduce E[X1 | Sn].

Exercise 2.6.10. Let p ∈ (0,1], let Xn , n ∈ N, be a Binomial(n, p) r.v., and, given Xn , let Yn have a
Poisson(Xn) distribution.

1. Compute the mean mn , the variance σ2
n , and the characteristic functionΦn of Yn .

2. Show that
Yn −mn

σn

(d)−−−−→
n→∞ Z ,

where Z ∼N (0,1). Is there a link with the central limit theorem?

Exercise 2.6.11. Let U be a uniformly distributed r.v. on [0,1) and let Xn := bnUc for n > 1. Deter-
mine the conditional law of U given Xn .

Exercise 2.6.12. Let (X ,Y ) be a random vector in Rn+m with probability density function (p.d.f.) p.

1. Show that Y ∈Rm admits a p.d.f. q and give its expression in terms of p.

2. For each y ∈Rm , we let ν(y, ·) denote the measure on Rn given by

ν(y, A) := 1

q(y)

ˆ
A

p(x, y)dx, A ∈B(Rn)

(with the convention ν(y, A) = 0 if q(y) = 0). Prove that for every bounded measurable function
f : Rn+m →R,

E[ f (X ,Y ) | Y ] =
ˆ

f (x,Y )ν(Y ,dx).

Exercise 2.6.13. Let {Xn}n>0 ⊂ L2(P) such that Sn := X1 +·· ·+Xn , n > 0, defines a martingale. Show
that E[Xi X j ] = 0 for all i 6= j .
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2.7 Martingales

Exercise 2.7.1. Let (Xn)n>0 be a martingale and T a stopping time. Recall that (Xn∧T )n>0 is again a
martingale and that (optional stopping theorem) if T ∈ L∞, then

XT ∈ L1, with E[XT ] = E[X0]. (?)

Show that (?) also holds in the other two following cases:

1. When T <∞ a.s. and (Xn)n>0 is dominated by some r.v. in L1.

2. When T ∈ L1 and (Xn+1 −Xn)n>0 is bounded in L∞.

Hint. Use the dominated convergence theorem.

Exercise 2.7.2 (Pig). Let Di , i > 1, be i.i.d. realizations of a fair 6-faced die roll. We define

T := inf{i > 1: Di = 1},

Fn :=σ(D1, . . . ,Dn), n > 0,

and

Sn :=
n∑

i=1
Di , n > 0.

1. Check that T is a (Fn)n>0-stopping time. Compute E[T ].

2. Show that

E[Sn | T ] = 4n1{T>n} +
(

7n +T

2
−3

)
1{T6n}.

3. Deduce that E[ST ] = 21.

4. Provide an alternative solution to Question 3 using a martingale.

Hint. Determine m ∈R such that (Sn −mn)n>0 is a (Fn)n>0-martingale.

Exercise 2.7.3 (Pokémon Go). Imagine that at each time n = 1,2, . . ., you find one of the m Pokémon™,
assuming they all appear independently and uniformly at random. Let R0 := m and Rn be the number
of different Pokémon you still need to capture after time n in order to complete your Pokédex.

1. Justify that conditionally on Rn , the r.v. Rn −Rn+1 is Bernoulli(Rn/m) distributed.

2. Let h(k) :=∑
16i6k 1/i for every k > 0. Deduce from Question 1 that, respectively,

Mn :=
( m

m −1

)n
Rn , and Ln := n

m
+h(Rn), n > 0,

define a martingale and a submartingale w.r.t. the natural filtration (Fn)n>0.

3. Let T := inf{n > 0: R(n) = 0} be the time you catch them all.

a) Check that T is a (Fn)n>0-stopping time.
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b) Show that Xn := Ln∧T , n > 0, becomes a martingale and deduce that T ∈ L1.

c) Deduce E[T ] (apply Exercise 2.7.1). Give an equivalent when m is large.

Exercise 2.7.4. Let θ ∈R, (Xk )k∈N be a sequence of i.i.d. N (0,1) r.v., and

Sn :=
n∑

k=1
Xk , n > 0.

1. Find f : R→R such that M (θ)
n := exp(θSn −n f (θ)), n > 0, is a martingale.

2. Does M (θ)
n converge as n →∞, almost surely? in L1?

Exercise 2.7.5. Let E := {A,B} be a set with two elements, m ∈ N, and consider an initial popula-
tion X0 ∈ E m of m individuals, each of which has either type A or type B. Suppose that at each time
n = 1,2, . . ., a new population Xn is born in such a way that each individual inherits the type of one
individual in the previous generation Xn−1, which is chosen independently and uniformly at random.
Formally

Xn = (Xn−1(σn,1), . . . , Xn−1(σn,m)) ∈ E m ,

with (σn,i )n∈N,16i6m an independent family of i.i.d. uniform r.v. on {1, . . . ,m}.

1. What do you think will eventually happen to the population?

Let An , n > 0, denote the number of individuals in Xn which have type A.

2. Justify that conditionally on An , the r.v. An+1 is Binomial(m, An/m) distributed.

3. Show that (An)n>0 is a martingale converging a.s.

4. Check that E[A2
n+1 | An] = m−1

m A2
n + An . Deduce that

Mn := (m −1)(m − An)+ (m An − A2
n)

( m

m −1

)n
, n > 0,

defines another martingale.

5. Prove your conjecture in Question 1.

Exercise 2.7.6. Let (Xn)n∈N be a sequence of independent r.v. We suppose that there exists a con-
stant C > 0 such that the following three (deterministic) series

(a)
∑

n∈N
P(|Xn | >C ), (b)

∑
n∈N

E
[

Xn1{|Xn |6C }
]
, (c)

∑
n∈N

Var
(
Xn1{|Xn |6C }

)
,

all converge (in R). Show that the series
∑

n∈N
Xn converges almost surely.

Hint. Show that Mn :=
n∑

k=1

(
Xk1{|Xk |6C } −E

[
Xk1{|Xk |6C }

])
, n > 0, is bounded in L2(P).
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Exercise 2.7.7 (A counterexample). Let T be a r.v. in N and (Yk )k∈N be an independent family of
i.i.d. r.v. with Var(Y1) = 1 and E[Y1] = 0. We set Fn :=σ(T,Y1, . . . ,Yn) and

Xn :=
n∑

k=1
Yk , n > 0.

1. Show that (Xn)n>0 is a (Fn)n>0-martingale which is not bounded in L1(P).

2. Give an example of distribution for T such that the (Fn)n>0-stopped martingale (Xn∧T )n∈N is
still not bounded in L1(P) (although it converges almost surely).

Exercise 2.7.8. Let S,T be two (Fn)n>0-stopping times and X ∈ L1(P). Show that

E[E[X |FS] |FT ] = E[E[X |FT ] |FS] = E[X |FS∧T ].

Hint. Apply the stopping theorem... a few times.

Exercise 2.7.9 (Other counterexamples). Let f : N→ R measurable and T be a N-valued r.v. such
that f (T ) ∈ L1(P). For every n > 0, define Fn :=σ({T = k}, k 6 n) and

Xn :=1{T6n} f (T )+1{T>n}r (n), where r (n) := E[1{T>n} f (T )]

P(T > n)
.

1. Check that T is a (Fn)n>0-stopping time and that (Xn)n>0 is a uniformly integrable (Fn)n>0-
martingale.

2. In this question we suppose that f (k) = 2k k−2 and that P(T = k) = 2−k , k ∈N.

a) Show that XT−1 ∉ L1(P). What is wrong regarding the stopping theorem?

b) Deduce that (Xn)n>0 is not dominated in L1(P).

3. In this question we suppose that f (k) = logk, k ∈N, and that, as k →∞,

P(T = k) = 1

k2(logk)2
+O

(
1

k2(logk)3

)
.

a) Check that T ∈ L1(P), while T ∉ L2(P).

b) Show that (Xn+1 −Xn)n>0 is bounded in L∞(P).

Hint.
∑

k>n

1

k2(logk)p = 1

n(logn)p +O

(
1

n(logn)p+1

)
as n →∞, for p ∈ {1,2}.

c) Show that
T∑

k=1
Xk ∉ L1(P).

Exercise 2.7.10. On the filtered probability space (Ω,F , (Fn)n>0,P), let (Xn)n>0 be a martingale
and T be a stopping time. We suppose that

P(T <∞) = 1, E[|XT |] <∞, and lim
n→∞E[|Xn |1{T>n}] = 0.

Show that E[XT ] = E[X0].
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Exercise 2.7.11. On (Ω,F , (Fn)n>0,P), let (Xn)n>0 be an adapted, integrable process,

An :=
n∑

k=1
E[Xk −Xk−1 |Fk−1], n > 0,

and

Mn := Xn − An , n > 0.

1. Show that (An)n>0 is a predictable process.

2. Show that (Mn)n>0 is a martingale.

3. Suppose we are given a predictable process (A′
n)n>0 with A′

0 = 0 and a martingale (M ′
n)n>0 such

that Xn = M ′
n + A′

n , n > 0. Show that A′
n = An and M ′

n = Mn a.s. for all n > 0.

4. We suppose in this question that (Xn)n>0 is a nonnegative submartingale.

a) Show that An 6 An+1 a.s. for all n > 0. We write A∞ := limn→∞ An ∈ [0,∞].

b) Show that if E[A∞] <∞, then (Xn)n>0 converges a.s.

c) For a > 0, let Ta := inf{n > 0: An+1 > a}.

i- Check that Ta is a stopping time, and that E[Xn∧Ta ]6 a +E[X0].

ii- Deduce that (Xn)n>0 converges a.s. on the event {Ta =∞}.

iii- Conclude that (Xn)n>0 converges a.s. on the event {A∞ <∞}.

d) We suppose that the increments of (Xn)n>0 are dominated in L1(Ω,F ,P):

E[S] <∞, where S := sup
n>1

|Xn −Xn−1|. (?)

Show that limsupn→∞ Xn =∞ a.s. on the event {A∞ =∞}.

5. We suppose in this question that (Xn)n>0 is a martingale satisfying to (?). Show that a.s. as
n →∞, Xn either converges or oscillates, that is

lim
n→∞Xn exists in R or

(
liminf

n→∞ Xn =−∞ and limsup
n→∞

Xn =∞
)
.

6. Prove the conditional Borel–Cantelli lemma: if En ∈Fn , n ∈N, then (up to a P-null set)

{
limsupEn

}= { ∞∑
n=1

P(En |Fn−1) =∞
}

.

Exercise 2.7.12. Let U1,U2, . . . be i.i.d. Uniform(0,1) r.v. Let X0 be any r.v. on (0,1) independent of
(Ui )i>1, and define by induction

Xn := t Xn−1 + (1− t )1{Un6Xn−1}, n > 1,

where t ∈ (0,1) is fixed.

33

mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


A few exercises B. Dadoun

1. Show that (Xn)n>0 is a martingale converging a.s. and in Lp for every p > 1.

2. Determine the law of X∞ := limn→∞ Xn .

Hint. Compute E[(Xn+1 −Xn)2].

Exercise 2.7.13. Let Xn , n > 1, be independent nonnegative r.v. with mean 1, and

Mn :=
n∏

i=1
Xi , n > 0.

1. Show that M∞ := limn→∞ Mn exists almost surely, and E[M∞]6 1.

2. Let an := E[
p

Xn], n > 1. Prove that the following conditions are equivalent:

(a) E[M∞] = 1;

(b) Mn → M∞ in L1(P);

(c) (Mn)n>0 is uniformly integrable;

(d)
∏

k>1 ak > 0;

(e)
∑

k>1(1−ak ) <∞.

3. Show that if one of the above condition is not satisfied, then M∞ = 0 a.s.

4. Express M∞ in the particular case where the Xn , n ∈N, are i.i.d.

Exercise 2.7.14 (Counterexamples).

1. Let U be a Uniform(0,1) r.v. and Xn := n1{nU<1}, n > 1. Show that (Xn)n>1 is bounded in L1(P)
but not uniformly integrable.

2. Show that the two following families are uniformly integrable but not dominated in L1(P) (that
is, E[supX∈X |X |] =∞):

a) X := {Xn,k }n>0
06k<22n

with Xn,k := 2n1{k622nU<k+1} and U ∼ Uniform(0,1);

b) X := {Xn}n>1 with Xn := n AnBn , An ,Bn , n > 1, Bernoulli( 1
n ) r.v., all independent.

Hint. Use Borel–Cantelli lemmas to prove that Xn → 0 a.s., and that E[Xn |F ] → 0 in L1(P)
but not a.s., where F :=σ(An : n > 1).

3. Let Xn , n > 1, be independent r.v. with P(Xn = 1−n2) = 1−P(Xn = 1) = n−2. Show that Sn :=
X1 + ·· · + Xn , n > 0, defines a martingale converging a.s. to +∞. Is this in contradiction with
Exercise 2.7.11.5?

Exercise 2.7.15. Let S := ⋃
n>1 Sn , where Sn := {π : N→ N bijective with π(k) = k for all k > n}.

Suppose X := (Xn)n>1 is a stochastic process such that for every π ∈S , X π := (Xπ(n))n>1 has the same
law as X . Define the exchangeable σ-algebra E :=⋂

n>1 En , where

En :=
{

{X ∈ A} : A ⊆RN measurable s.t. {X ∈ A} = {X π ∈ A} for all π ∈Sn

}
.
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1. Show that for every f : RN→R bounded measurable,

E[ f (X ) | En] = 1

n!

∑
π∈Sn

f (X π), n > 1,

and that as n →∞, this sequence converges to E[ f (X ) | E ] a.s. and in L1(P).

2. Let the tail σ-algebra T := ⋂
n>1σ(Xk : k > n). Show that T ⊆ E and that for all f : RN → R

bounded measurable, E[ f (X ) | E ] = E[ f (X ) |T ].

3. Show that if A ∈ E , then there is B ∈T such that A = B up to a P-null set.

Hint. Show that P(A |T ) =1A.

4. Suppose X ∈ {0,1}N. Compute P(X1 = x1, . . . , Xk = xk | En) for all n,k > 1, x ∈ {0,1}k . Deduce that
given P :=P(X1 = 1 | E ), the Xn , n > 1, are i.i.d. Bernoulli(P ) r.v.

Exercise 2.7.16 (0-1 laws). Let (Ω,F , (Fn),P) be a filtred probability space and F∞ := ∨
n>0

Fn .

1. a) Show that for every X ∈ L1(Ω,F ,P),

E[X |Fn] −−−−→
n→∞ E[X |F∞], a.s. and in L1.

b) Deduce Lévy’s 0-1 law: for every A ∈F∞,

P(A |Fn) −−−−→
n→∞ 1A, a.s.

2. Let (Xn)n>1 be a sequence of i.i.d. real r.v.

a) Show Kolmogorov’s 0-1 law: the tail σ-algebra T :=⋂
n>1σ(Xk : k > n) is P-trivial:

∀A ∈T , P(A) ∈ {0,1}.

Hint. Use Lévy’s 0-1 law.

b) Use Kolmogorov’s 0-1 law and Exercise 2.7.15.3 to reprove Hewitt–Savage’s 0-1 law: the ex-
changeable σ-algebra E :=σ( f (X ) : f ∈ S), where S := { f : RN→R symmetric}, is P-trivial.

2.8 Markov chains

Exercise 2.8.1. Let p ∈ (0,1), X1, X2, . . . i.i.d. Bernoulli(p) r.v., and Sn := X1 +·· ·+Xn . Justify whether
each of the following processes is a Markov chain or not; if it is, give the corresponding state space E
and the transition matrix Q.

1. Xn , n > 0;

2. Sn , n > 0;

3. Tn := S1 +·· ·+Sn , n > 0;
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4. Vn := (Sn ,Tn), n > 0.

Exercise 2.8.2. Let p ∈ (0,1) and (Xn)n>0 be a Markov chain on E := {a,b,c} with transition matrix

Q :=
1−p p 0

1/2 0 1/2
0 0 1

.

1. Draw its transition graph.

2. Compute the probability P(Xn = b | X0 = a), n ∈N. Find its limit as n →∞.

Exercise 2.8.3. Let f : E → F be a function between countable sets, and let (Xn)n>0 be a Markov
chain on E with transition matrix P .

1. Find a simple counterexample showing that Yn := f (Xn), n > 0, is not necessarily a Markov
chain on F .

2. We suppose that whenever f (x) = f (y), then P (x, A) = P (y, A) for every A ⊆ E . Show that (Yn)n>0

is a Markov chain; express its transition matrix using P and f .

Exercise 2.8.4. Let (Un)n>1 be i.i.d. uniform r.v. on (0,1) and X0 an independent r.v. on E .

1. Let f : E × (0,1) → E and define Xn+1 := f (Xn ,Un+1), n > 0. Show that (Xn)n>0 is a Markov chain
on E . Express its transition matrix in terms of f and U1.

2. Conversely, let P be a given transition matrix. Find a function f : E × (0,1) → E such that the
Markov chain (Xn)n>0 above has transition matrix P .

Exercise 2.8.5. Let E be a finite set of cardinal k > 2, and P be a transition matrix on E such that
α := inf{P (x, y) : x, y ∈ E } > 0 (note then that 0 <α6 1/2).

1. We fix y ∈ E and set pn(x) := Pn(x, y), x ∈ E .

a) Show that for every n > 0,{
inf pn+k >αsup pn + (1−α) inf pn ,

sup pn+k 6α inf pn + (1−α)sup pn .

Hint. Use that
∑

x∈X
Pk (·, x)+ ∑

x∈E\X
Pk (·, x) = 1 for X := {x ∈ E : pn(x) = sup pn}.

b) Deduce that dn := sup pn − inf pn converges to 0 as n →∞.

2. Conclude that there exists a probability distribution (p(y))y∈E on E such that

∀x ∈ E , p(y) = lim
n→∞Pn(x, y).

Exercise 2.8.6. Let p, q ∈ [0,1] and (Xn)n>0 be a Markov chain on E := {a,b} with graph
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a b .

1−p

p

q

1−q

1. For which values of p, q is (Xn)n>0 irreducible? Give the state classification.

2. Give the transition matrix of (Xn)n>0 and find the invariant probability measures.

3. Determine explicitly the law of Xn under Pa, for all n > 0.

4. Does (Xn)n>0 converge in law?

Exercise 2.8.7. Let p ∈ [0,1], q := 1− p, and (Yk )k>1 be a sequence of i.i.d. r.v. with P(Y1 = 1) = p,
P(Y1 =−1) = q . Define (Xn)n>0 by X0 ∈Z+ and

Xn+1 := (Xn +Yn+1)+, n > 0,

where x+ := max(x,0).

1. Prove that (Xn)n>0 is a Markov chain. Give its state space and transition graph.

2. Is (Xn)n>0 irreducible? Give the state classification. (Discuss according to p.)

Hint. Compare (Xn)n>0 to the random walk X̃n := Y1 +·· ·+Yn , n > 0, on Z.

3. Determine all invariant measures of (Xn)n>0. Is there some invariant law?

Exercise 2.8.8. Let (Xn)n>0 be a Markov chain on a finite or countable state space E , and µ be a
probability distribution on E .

1. Show that if Xn converges in law to µ as n →∞, then µ is an invariant measure.

2. Show that if µ is an invariant measure, then µ(x) = 0 for all transient state x ∈ E .

Exercise 2.8.9. Suppose that we shuffle a traditional deck of 52 cards in the following way: at each
time n ∈N, we choose two cards uniformly at random and exchange them.

1. Model this process by a Markov chain. (Give its state space and transition matrix.)

2. Show that this chain is irreducible and find its unique invariant distribution.

Exercise 2.8.10. Let (Xn)n>0 be a Markov chain on a finite or countable state space E . Recall that
Hx := inf{n > 1: Xn = x}, x ∈ E , and, when x is recurrent, that

νx(y) := Ex

[
Hx−1∑
n=0

1{Xn=y}

]
, y ∈ E

(the mean number of visits of y before returning to x), defines an invariant measure.
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1. We suppose in this question that (Xn)n>0 is the symmetric random walk on E = Z. Show that
ν0 ≡ 1 (the mean number of visits of y ∈Z before returning to 0 is 1).

2. We suppose in this question that (Xn)n>0 is irreducible and positive recurrent. Show that for
every x, y ∈ E ,

νx(y) = Ex[Hx]

Ey [Hy ]
.

Exercise 2.8.11. Let (Xn)n>0 be a Markov chain on a finite or countable state space E . Recall that
Hx := inf{n > 1: Xn = x}, x ∈ E , and, when x is recurrent, that

νx(y) := Ex

[
Hx−1∑
n=0

1{Xn=y}

]
, y ∈ E

(the mean number of visits of y before returning to x), defines an invariant measure.

1. We suppose in this question that (Xn)n>0 is the symmetric random walk on E = Z. Show that
ν0 ≡ 1 (the mean number of visits of y ∈Z before returning to 0 is 1).

2. We suppose in this question that (Xn)n>0 is irreducible and positive recurrent. Show that for
every x, y ∈ E ,

νx(y) = Ex[Hx]

Ey [Hy ]
.

Exercise 2.8.12. Let (Xn)n>0 be a Markov chain on E :=Zwith transition matrix

Q(i , j ) :=


pi , if j+ = i++1 or j− = i−+1,

qi , if j+ = i+−1 or j− = i−−1,

0, otherwise,

where pi ∈ (0,1), qi := 1−pi , for every i ∈ E .

1. Check that (Xn)n>0 is irreducible. (Sketch the transition graph.)

2. We suppose that

limsup
|k|→∞

pk < 1

2
.

Show that (Xn)n>0 is (positive) recurrent.

Hint. Apply Foster–Lyapunov’s criterion.

Exercise 2.8.13. Let (Xn)n>0 be an irreducible Markov chain on E . We suppose that there exist a
finite subset F ⊆ E and a function f : E →R such that

(i) ∀x ∈ F, f (x) > 0; (ii) infx∈E f (x) = 0; (iii) ∀x ∈ E \ F, Ex[ f (X1)]6 f (x).

Show that (Xn)n>0 is transient.

Hint. Introduce the hitting time TF := inf{n > 0: Xn ∈ F }...
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Exercise 2.8.14. Let Q be a symmetric, irreducible, aperiodic transition matrix on E , and µ be a
probability measure on E such that µ(x) > 0 for all x ∈ E . We set

P (x, y) :=Q(x, y) min

(
1,
µ(y)

µ(x)

)
, for x 6= y ∈ E .

1. Check that P extends to a transition matrix which is also irreducible and aperiodic.

We consider a Markov chain (Xn)n>0 on E with transition matrix P .

2. Show that µ is an invariant measure for P , and that (Xn)n>0 is positive recurrent.

3. Let Un , n ∈ N, be a r.v. independent of (Xk )k>0, with P(Un = i ) = 1/n, 0 6 i < n. Show that for
every x ∈ E , ∑

x∈E

∣∣P(XUn = x)−µ(x)
∣∣−−−−→

n→∞ 0.

Exercise 2.8.15. We consider the simple random walks of the knight and the king on a classical
chessboard, E := {a, . . . ,h}× {1, . . . ,8}. Authorized moves are recalled below.

8 zzZzzZzzZzzZ
7 zZzzZzzZzzZz
6 zzZzzZzzZ1TKzZ
5 zZzzZzzZzzZz
4 zzZzzZzzZzzZ
3 zZz2–UnzzZzzZz
2 zzZzzZzzZzzZ
1 zZzzZzzZzzZz

a b c d e f g h

1. Starting in a8, what is the expected time for the king to return to a8? In the meantime, how many
visits in the four squares {d4,e4,e5,d5} will he have performed?

Hint. Use Exercise 2.8.11.2.

2. At which frequency does the knight visit square g6, as time tends to infinity?

Exercise 2.8.16. Let (Xn)n>0 be a Markov chain on a finite state space E , with transition matrix Q.
We call a state x ∈ E absorbing, and we write x ∈ A, if Q(x, x) = 1. We suppose r := ]A > 1 and A
accessible: ∀x ∈ E , ∃n ∈N, Qn(x, A) > 0.

1. Is (Xn)n>0 irreducible?

2. Let Ir denote the r × r identity matrix. Check that we may write Q in the form

Q :=
(

P T

0 Ir

)
.
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3. Let HA := inf{n > 0: Xn ∈ A}.

a) Show that for all i , j ∉ A, P n(i , j )6Pi (HA > n).

b) Show that there exists M > 1 such that

p := sup
i∉A

Pi (HA > M) < 1.

Hint. You can take M := supi∉A mi , where mi := inf{n > 0: Pi (Xn ∈ A) > 0}.

c) Deduce that Pi (HA =∞) = 0 and P n(i , j ) → 0 for all i , j ∉ A.

Hint. Check that supi∉A Pi (HA > Mn)6 pn (use the Markov property).

4. Let s := ]E − r . Show that Is −P is invertible and that, for F := (Is −P )−1,

lim
n→∞Qn =

(
0 F T

0 Ir

)
.

Hint. Prove that 1 is not an eigenvalue of P .

5. a) Check that for all i , j ∉ A,

F (i , j ) = Ei

[ ∞∑
n=0

1{Xn= j }

]
.

b) Show that
∑

j∉A F (i , j ) = Ei [HA] for all i ∉ A.

c) Show that F T (i , j ) =Pi (XHA = j ) for all i ∉ A and j ∈ A.

Exercise 2.8.17. Consider the Markov chain on E := {1,2,3,4,5,6} with transition matrix:

Q :=



0 1 0 0 0 0
0.4 0.6 0 0 0 0
0.3 0 0.4 0.2 0.1 0
0 0 0 0.3 0.7 0
0 0 0 0.5 0 0.5
0 0 0 0.8 0 0.2

.

1. Draw the transition graph.

2. Give the recurrence/transience classes.

3. Compute P3(Xn ∈ {4,5,6} eventually).

Hint. Use the Markov property.

Exercise 2.8.18. Let (Yn)n>0 be the symmetric random walk on Z, that is Yn = Y0 +∑n
i=1ξi , n > 0,

with ξ, i > 1, i.i.d. uniform ±1 r.v. independent of Y0 ∈ L1. Let H−1 := inf{n > 0: Yn =−1}.

1. Let k ∈Z+.

a) What is P0(H−1 = 2k)?
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b) Compute P0(Y2k+1 =−1).

Hint. Under P0, {Y2k+1 =−1} means that exactly k of the ξ1, . . . ,ξ2k+1 equal +1...

c) Let (xi ) ∈ {±1}2k+1 with x1 +·· ·+ x2k+1 =−1. Check that there is one and only one 1 6 r 6
2k +1 such that, if we set x̃ := (xr+1, . . . , x2k+1, x1, . . . , xr ), then

∀ j 6 2k,
j∑

i=1
x̃i > 0.

Suggestion. Do a drawing.

d) Deduce that P0(H−1 = 2k +1) = 1
2k+1 P0(Y2k+1 =−1).

2. Give an equivalent of P0(H−1 = 2k +1) as k →∞.

Hint. Use Stirling’s formula.

3. Conclude that E0[H−1] =∞.

Exercise 2.8.19. Using Exercise 2.7.11.5, give a simple proof that every irreducible, centered, finite-
range random walk on Z is recurrent.
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3
COMBINATORICS OF INTEGER PARTITIONS

The following exercises are due to Jehanne Dousse.

3.1 Generating functionology

Exercise 3.1.1. List all partitions of 6.

Exercise 3.1.2.

1. List all partitions of 6 into even parts, and those in which each part occurs an even number of
times. What do you notice?

2. Explain why, for n odd,

p(n | even parts) = p(n | each part occurs an even number of times) = 0.

3. Show that for all n ∈N,

p(n | even parts) = p(n | each part occurs an even number of times).

Exercise 3.1.3.

1. What is the generating function for partitions into distinct parts equal to 2, 5 or 7?

2. What is the generating function for partitions into parts equal to 2, 5 or 7, such that each part
occurs at most d times (d ∈N)?

3. What is the generating function for partitions into parts equal to 2, 5 or 7?
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Exercise 3.1.4. What generating function would you compute and what coefficient would you ex-
tract if you wanted to know the number of ways of changing a 100 CHF bill into coins of 1, 2 and 5
CHF and bills of 10 and 20 CHF?

Exercise 3.1.5. What is the generating function for partitions into parts6 2k (k ∈N) where odd parts
cannot repeat?

Exercise 3.1.6. Give the generating function for(
n2 +4n +5

n!

)
n>0

.

Exercise 3.1.7.

1. Show that if f is the generating function for (an)n>0, then f
1−X is the generating function for

(
∑n

j=0 a j )n>0.

2. Give the generating function for (
n∑

j=0
j

)
n>0

.

3. Show that if f is the generating function for (an)n>0, then f k is the generating function for( ∑
n1+···+nk=n

an1 · · ·ank

)
n>0

.

4. Recover the classical formula
n∑

j=0
j = n(n +1)

2
.

Exercise 3.1.8. Prove that for all n > 0,

n∑
k=0

(
n

k

)2

=
(

2n

n

)
.

Hint. Compute a well-chosen generating function.

Exercise 3.1.9. Let (an)n>0 be a sequence defined by a0 = 0 and for all n > 1,

an = 2an−1 +1.

What is the generating function for (an)n>0?

Exercise 3.1.10. Let (bn)n>0 be a sequence defined by b0 = 1 and for all n > 1,

bn = 2bn−1 +n −1.
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1. What is the generating function for (bn)n>0?

2. Give an explicit formula for bn .

Exercise 3.1.11. We saw that if f is the generating function for (an)n>0, then f /(1−X ) is the gener-
ating function for (

∑n
j=0 a j )n>0.

Use this to prove that the Fibonacci numbers fn satisfy, for all n > 0,

f0 + f1 +·· ·+ fn = fn+2 −1

Exercise 3.1.12. Let cn,k denote the number of compositions of n into k (nonzero) parts.

1. What is the (univariate) generating function for (cn,k )n>0?

2. Give an exact formula for cn,k . You may use the formula

∑
n>0

(
n

k

)
X n = X k

(1−X )k+1
.

Can you give a combinatorial interpretation?

3. What is the (bivariate) generating function for (cn,k )k>0?

4. Deduce an exact formula for cn , the number of compositions of n. Can you give a combinatorial
interpretation?

Exercise 3.1.13.

1. Show that ∑
n,k>0

p(n | k parts, parts ≡ j mod m) qn zk = 1

(zq j ; qm)∞
,

and ∑
n,k>0

Q(n | k parts, parts ≡ j mod m) qn zk = (−zq j ; qm)∞.

2. For n,k,m nonnegative integers, let a(n,k,m) denote the number of partions of n into k distinct
parts congruent to 2 mod 3 and m parts congruent to 1 mod 6, such that 2 is not a part. What is
the (triviariate) generating function for an,k,m?

Exercise 3.1.14. Using generating functions, show that the number of partitions of n into parts
congruent to ±1 mod 6 equals the number of partitions of n into distinct parts congruent to ±1 mod 3.

Exercise 3.1.15 (a bit challenging). Prove that the number of partitions of n such that each part
appears 2, 3 or 5 times equals the number of partitions of n into parts congruent to ±2, ±3, or 6
mod 12.

Exercise 3.1.16. Show that for all n,k > 1,

p(n | k parts) = p(n −1 | k −1 parts)+p(n −k | k parts).
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3.2 Ferrers diagrams and q-series identities

Exercise 3.2.1. Find the conjugates of the following partitions:

• 6+6+4+2,

• 3+3+2+1,

• 6+1.

Exercise 3.2.2. Use conjugation to show that for all n,

p(n | distinct parts) = p(n | parts of every size from 1 to the largest part).

For example, for n = 5, the partitions of the first type are 5, 4+1 and 3+2, and the partitions of the
second type are 1+1+1+1+1, 2+1+1+1 and 2+2+1.

Exercise 3.2.3. Show that for all n, the number of partitions of n which have nothing under the
Durfee square equals the number of partitions of n such that consecutive parts differ by at least 2.

Exercise 3.2.4. Using Ferrers diagrams, show that

1

(zq ; q)∞
= ∑

n>0

(
zn q2n2

(q ; q)n (zq ; q)2n
+ zn+1 q (n+1)(2n+1)

(q ; q)n (zq ; q)2n+1

)
.

Exercise 3.2.5. Show that for every n ∈N,

∑
k∈Z

(−1)k Q

(
n − k(3k +1)

2

)
=

{
(−1) j , if n = j (3 j +1), j ∈Z,

0, otherwise.

Hint.

Usethepentagonalnumberstheorem.

Exercise 3.2.6. Show that ∑
n>0

qn(n+1)/2 = (q2; q2)∞
(q ; q2)∞

.

Hint.

UseJacobi’stripleproductidentity.

Exercise 3.2.7. We will now use Euler’s Pentagonal numbers theorem to find the recurrence relation
for p(n) that was mentioned in class.

1. Show that (∑
k∈Z

(−1)k qk(3k+1)/2

)
·
( ∑

n>0
p(n) qn

)
= 1.

2. Deduce that for every n ∈N,

p(n) = ∑
k>1

(−1)k−1 p

(
n − k(3k ±1)

2

)
.
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3. Write p(10) as a sum of smaller values of p(n).

(This method, discovered by Leonhard Euler in the 18th century, is still the fastest way to compute p(n)
and is used in computing softwares such as Maple, Mathematica, etc.)

Exercise 3.2.8. Prove the second q-analogue of Pascal’s triangle.

Exercise 3.2.9. Give an analytic proof of the q-binomial series

1

(zq ; q)n
= ∑

m>0
zm qm

[
n +m −1

m

]
q

.

Exercise 3.2.10. Show that for all integers m,n > 0,

n∑
j=0

q j

[
m + j

m

]
q

=
[

n +m +1

m +1

]
q

.

Exercise 3.2.11. Let

Hn(t ) :=
n∑

j=0

[
n

j

]
q

t j .

Prove that ∑
n>0

Hn(t ) xn

(q ; q)n
= 1

(x; q)∞ (xt ; q)∞
.

Exercise 3.2.12. Show that, if n is odd,

n∑
j=0

(−1) j

[
n

j

]
q

= 0.

What happens if n is even?

Exercise 3.2.13. Let n tend to infinity in the q-binomial series

1

(zq ; q)n
= ∑

m>0
zm qm

[
n +m −1

m

]
q

.

1. What do we obtain?

2. Give a combinatorial interpretation of the obtained formula.

Exercise 3.2.14. Show that ∑
n>0

(−1)n(2n +1) q
n(n+1)

2 = (q ; q)3
∞.
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3.3 Congruence identities

Exercise 3.3.1. Prove the second Ramanujan congruence: for every n > 0,

p(7n +5) ≡ 0 mod 7.

Exercise 3.3.2. For k > 2, the number of partitions of n into parts not divisible by k equals the
number of partitions of n where each part occurs at most k −1 times. Prove this:

1. analytically,

2. bijectively.

Exercise 3.3.3 (Lemma for Schur’s theorem). Let πm(n) count the number of partitions λ := λ1 +
·· ·+λs of n such that

λ1 6m and, for all 16 i < s, λi −λi+1 >

{
4, if λi divisible by 3,

3, otherwise.

Then we have the relations

(i) π3m+1(n) =π3m(n)+π3m−2(n −3m −1),

(ii) π3m+2(n) =π3m+1(n)+π3m−1(n −3m −2),

(iii) π3m+3(n) =π3m+2(n)+π3m−1(n −3m −3).

Prove (ii) and (iii).

Exercise 3.3.4. Let (an)n>0 be a sequence such that lim
n→∞an exists. Prove Abel’s lemma:

lim
x→1−

(1−x)
∑

n>0
an xn = lim

n→∞an .

Exercise 3.3.5 (Reverse bijection for Schur’s theorem).

1. Show that the transformation from P1 to P4 in Schur’s theorem is equivalent to the following
process: As long as there exists some number that is not at least 3 greater than the number be-
low, subtract 3 from this number, add 3 to the number below, and exchange these two numbers.
Example:

P1 =
11
18
5
3

→
21
8
6
2

→
21
9
5
2

= P ′
1.
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2. Show that the following process is the reverse bijection of the above: Start by splitting parts of P4

that are multiple of 3 into pairs of parts differing by 1 or 2. Example:

P4 =
21
9
5
2

→
11+10
5+4
5
2

= P ′
4.

We obtain a partition P ′
4 with no multiples of 3. Now as long as the smallest part of some pair

is less than 3 greater than the part below, subtract 3 from the largest part of the pair, add 3 to
the part below, and switch their positions. This process ends with a partition into parts that are
not multiples of 3, where parts differing by at most two are paired up, starting from the smallest
part. Example:

P ′
4 =

11+10
5+4
5
2

→
11+10
8
4+2
2

→
11
10+8
5
2+1

=
11
18
5
3

= P ′′
1 .

Exercise 3.3.6 (Refinement of Schur’s theorem, Gleissberg). The goal of this exercise is to prove
the following refinement of Schur’s theorem due to Gleissberg. Let C (m,n) denote the number of
partitions if n into m distinct parts congruent to 1 or 2 mod 3. Let D(m,n) denote the number of
partitions of n into m parts (counting parts divisible by 3 twice), where parts differ by at least 3 and no
two consecutive multiples of 3 appear. Then for all m,n > 0, C (m,n) = D(m,n).

1. Let π`(m,n) denote the number of partitions counted by D(m,n) such that the largest part does
not exceed `. Prove that for all `,m,n positive integers,

π3`+1(m,n) =π3`(m,n)+π3`−2(m −1,n −3`−1),

π3`+2(m,n) =π3`+1(m,n)+π3`−1(m −1,n −3`−2),

π3`+3(m,n) =π3`+2(m,n)+π3`−1(m −2,n −3`−3).

2. Define, for |q| < 1, |t | < 1,

a`(t , q) := ∑
m,n>0

π`(m,n) t m qn .

What is lim`→∞ a`(t , q)?

3. Prove that

a3`−1(t q3, q) = (1+ t q3`+1 + t q3`+2) a3`−4(t q3, q)+ t 2q3`+3(1−q3`−3) a3`−7(t q3, q).

4. Show that

a3`+3(t , q) = (1+ t q3`+1 + t q3`+2) a3`(t , q)+ t 2q3`+3(1−q3`−3) a3`−3(t , q).
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5. What are the initial values a−1(t q3, q), a2(t q3, q), a3(t , q), a6(t , q)? Verify that

a3(t , q) = (1+ t q)(1+ t q2) a−1(t q3, q),

and

a6(t , q) = (1+ t q)(1+ t q2) a2(t q3, q).

6. Deduce that for all `> 0,

a3`+3(t , q) = (1+ t q)(1+ t q2) a3`−1(t q3, q).

7. Conclude by finding lim`→∞ a`(t , q).

Exercise 3.3.7. Let M(k,r,n) denote the number of partitions of n with crank congruent to k mod-
ulo r . Show that for all n > 0,

M(0,7,7n +5) = ·· · = M(6,7,7n +5).
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