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1.1 Measure theory

Exercise 1.1.1. Give an example of a set E , a σ-algebra A on E and an application f : E → F such
that {

f (A) : A ∈A
}

is not a σ-algebra on f (E).

Solution of Exercise 1.1.1. Take for instance E := {1,2,3}, A :=σ({{3}}) = {;, {1,2}, {3},E }, and f defined
on E by f (i ) := (−1)i . Then f (;) =;, f ({1,2}) = f (E) = {−1,1}, and f ({3}) = {−1}, but{

f (A) : A ∈A
}
=

{
;, {−1}, {−1,1}

}
is not a σ-algebra on f (E) (it is not stable by complement, as it does not contain {1} = f (E) \ {−1}).
(This is due to the lack of injectivity of f .) ■

Exercise 1.1.2. Let
C :=

{
[a,b) : a,b ∈Q, a < b

}
.

Prove that the σ-algebra σ(C ) generated by C is the Borel σ-algebra B(R) of R.
Hint. Recall thatQ is dense in R.

Solution of Exercise 1.1.2. By definition B(R) is aσ-algebra containing all open subsets ofR. As [a,b) =
(a −1,b) \ (a −1, a) is the difference of two such subsets, it is clear that C ⊆ B(R). Since σ(C ) is the
smallest σ-algebra containing C we have σ(C ) ⊆B(R).

Let b ∈R. For all n > 1 there exists a rational number bn in the interval (b,b +1/n). Then b < bn <
b +1/n for all n > 1 and bn tends to b as n →∞. We observe that

(−∞,b] = ⋃
m∈N

⋂
n∈N

[−m,bn).
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A few exercises B. Dadoun

Indeed, if x ∈ R with x 6 b then we can find m ∈ N such that −m 6 x, and because b < bn we have
x ∈ [−m,bn) for all n ∈N. Conversely, if x ∈R is such that −m 6 x < bn for some m ∈N and for all n ∈N,
then taking the limit n →∞ gives −m 6 x 6 b and in particular x ∈ (−∞,b]. Since σ(C ) is stable by
countable unions and intersections, we deduce that σ(C ) contains the family of intervals (−∞,b]
with b ∈ R. But the smallest σ-algebra containing this family is precisely B(R), so σ(C ) ⊇ B(R). In
conclusion, σ(C ) =B(R). ■

Exercise 1.1.3. Let E ,F be two sets, A and B two σ-algebras on E and F respectively and f : E → F
an application. Recall the notion of inverse image

f −1〈B〉 :=
{

x ∈ E : f (x) ∈ B
}

of a subset B ⊆ F by f .

1. Prove that the set of subsets of E defined by

f −1〈B〉 :=
{

f −1〈B〉 : B ∈B
}

is a σ-algebra on E .

2. Prove that the set of subsets of F defined by

f [A ] :=
{

B ⊆ F : f −1〈B〉 ∈A
}

is a σ-algebra on F .

Solution of Exercise 1.1.3. In both questions we need to check that the three axioms defining a σ-
algebra are fulfilled.

1. First, f −1〈F 〉 = E since f (x) ∈ F for all x ∈ E , so E ∈ f −1〈B〉. Second, if A ∈ f −1〈B〉 then A =
f −1〈B〉 for some B ∈B, so F \ B is also in B because B is a σ-algebra on F , and since

f (x) ∈ F \ B ⇐⇒ f (x) ∉ B

⇐⇒ x ∉ f −1〈B〉
⇐⇒ x ∈ E \ f −1〈B〉,

which means that f −1〈F \B〉 = E \ f −1〈B〉 = E \ A, the set f −1〈B〉 is stable by complement. Third,
if A1, A2, . . . ∈ f −1〈B〉, then there exist B1,B2, . . . ∈ B such that An = f −1〈Bn〉 for all n > 1. Since⋃

n>1 Bn is again in B (because B is a σ-algebra), and

f (x) ∈ ⋃
n>1

Bn ⇐⇒ ∃n > 1, f (x) ∈ Bn

⇐⇒ ∃n > 1, x ∈ f −1〈Bn〉
⇐⇒ x ∈ ⋃

n>1
f −1〈Bn〉,

we have that ⋃
n>1

An = f −1

〈 ⋃
n>1

Bn

〉
∈ f −1〈B〉,

and f −1〈B〉 is stable by countable union. Hence f −1〈B〉 is a σ-algebra on E .
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B. Dadoun 1.1. MEASURE THEORY

2. First f −1〈F 〉 = E ∈A since A is a σ-algebra, so F ∈ f [A ]. Second, if B ∈ f [A ] then f −1〈B〉 ∈A ,
and because again A is a σ-algebra on E , E \ f −1〈B〉 = f −1〈F \ B〉 ∈A , proving that F \ B ∈ f [A ]
and so f [A ] is stable by complement. Third, if B1,B2, . . . ∈B then f −1〈B1〉, f −1〈B2〉, . . . ∈A and
thus

f −1

〈 ⋃
n>1

Bn

〉
= ⋃

n>1
f −1〈Bn〉 ∈A

(because A is a σ-algebra!), so f [A ] is stable by countable union. Hence f [A ] is a σ-algebra
on F . ■

Exercise 1.1.4. Let E := [0,1), n ∈ {1,2, . . .} and 0 =: a0 < a1 < ·· · < an := 1. Give σ(C ), the smallest
σ-algebra on E which contains all elements of

C :=
{

[ai−1, ai ) : 16 i 6 n
}

.

Solution of Exercise 1.1.4. Write [n] := {1,2, . . . ,n} and Pn for the powerset of [n]. Let

A :=
{⋃

i∈I
[ai−1, ai ) : I ∈Pn

}
.

Then σ(C ) =A . Indeed:

(i) A is a σ-algebra: it contains E (given by I = [n]) and is stable by complement (if A ∈A is given
by I ∈Pn , then E \ A is given by [n] \ I ∈Pn) and by (countable) union (take I =∪ j I j );

(ii) A contains the elements of C (given by I = {1}, {2}, . . . , {n});

(iii) A is contained inσ(C ), since theσ-algebraσ(C ) must contain (countable) unions of elements
from C . ■

Exercise 1.1.5. Let E be a set. Show that

A :=
{

A ⊆ E : A or E \ A is finite or countably infinite
}

is a σ-algebra on E .

Solution of Exercise 1.1.5. First, ; = E \ E is finite so E ∈ A . Second, if A ∈ A , then either E \ A or
A = E \ (E \ A) is finite or countably infinite, so E \ A ∈A and A is thus stable by set difference. Third,
let A1, A2, . . . ∈ A and A := ⋃

n>1 An . If for each n > 1, An is finite or countably infinite then so is A. If
otherwise there exists n > 1 such that E \ An is finite or countably infinite, then E \ A must be also finite
or countably infinte, since E \ A ⊆ E \ An . In any case, either A or E \ A is finite or countably infinite,
so A is stable by union. It follows by definition that A is a σ-algebra on E . ■

Exercise 1.1.6. Let E be a set, A a σ-algebra on E and µ, ν two measures on (E ,A ) such that µ(E) =
ν(E) = 1. Prove that the set

D :=
{

A ∈A : µ(A) = ν(A)
}

is a Dynkin system.
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Solution of Exercise 1.1.6. First, E ∈ D since µ(E) = 1 = ν(E). Second, if A ∈ E then E \ A is in A

(because A is a σ-algebra) and

µ(E \ A) =µ(E)−µ(A) = ν(E)−ν(A) = ν(E \ A),

hence E \A ∈D (note that the equalities above hold because all quantities are finite). Third, if A1, A2, . . .
are pairwise disjoints elements of D then

⊔
n>1 An ∈A (because A1, A2, . . . ∈A and A is a σ-algebra)

and

µ

( ⊔
n>1

An

)
= ∑

n>1
µ(An) = ∑

n>1
ν(An) = ν

( ⊔
n>1

An

)
by the σ-additivity of measures. It follows by definition that D is a Dynkin system. ■

Exercise 1.1.7. Let E be a set and A a σ-algebra on E . We suppose that A is finite or countably
infinite. For x in E we define

A(x) := ⋂
A∈A

s.t. x∈A

A.

1. Show that A(x) ∈A and that A(x) is the smallest element of A which contains x. (Prove that for
all A ∈A , x ∈ A =⇒ A(x) ⊆ A.)

2. Show that for all x, y ∈ E , y ∈ A(x) =⇒ A(x) = A(y).

Hint. Use that E \ A(y) ∈A .

3. Let E := {B ⊆ E : ∃x ∈ E , B = A(x)}. Prove that A =σ(E ).

4. Let P (E ) denote the powerset of E . Show that the application

Φ : P (E ) −→A

B 7−→ ⋃
B∈B

B

is injective.

Remark. This exercise proves that there is no countably infinite σ-algebra (as the powerset of any set
cannot be countably infinite).

Solution of Exercise 1.1.7.

1. By assumption, A is either finite or countably infinite, so A(x) is an intersection over a finite or
countably infinite family of elements of A . Because σ-algebras are stable by countable inter-
section, we have A(x) ∈A . The second assertion is immediate.

2. Assume y ∈ A(x). The result of Question 1 with A = A(x) gives the inclusion A(y) ⊆ A(x). To
show A(y) ⊆ A(x) it is thus enough to prove that x ∈ A(y). But if x ∈ E \ A(y), applying the result
of Question 1 with A = E \ A(y) gives A(x) ⊆ E \ A(y), and therefore A(y) ⊆ A(x) ⊆ E \ A(y) which
yields the contradiction y ∈ A(y)∩ (E \ A(y)). Hence A(x) = A(y).
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B. Dadoun 1.1. MEASURE THEORY

3. Because A(x) ∈ A for all x ∈ E , it is immediate that E ⊆ A and thus σ(E ) ⊆ A because A is a
σ-algebra. Since for all A ∈A ,

A = ⋃
B∈A s.t.∃x∈A, B=A(x)

B ,

where the union is over a family which is at most countably infinite, the reverse inclusion holds.

4. First, as E ⊆ A the set E and therefore any of its subsets B ∈ P (E ) is finite or countably in-
finite (so that Φ(B) ∈ A ); Φ is thus well defined from P (E ) to A . Second, let B,B′ ∈ P (E )
be different. By eventually exchanging B and B′ we can assume that there exists x ∈ E such
that A(x) ∈ B and A(x) ∉ B′. Then Φ(B) 6= Φ(B′) since x ∈ Φ(B) (because A(x) ∈ B and
x ∈ A(x) ⊆ Φ(B)) but x ∉ Φ(B′) (because x ∈ B ′ for some B ′ ∈ B′ would imply B ′ = A(x) by
Question 2, but this is impossible since A(x) ∉B′ by assumption). ■

Exercise 1.1.8. Let (Ω,A ,µ) be a measured space. We write

Nµ :=
{

N ⊆Ω : ∃B ∈A , N ⊆ B and µ(B) = 0
}

for the set of µ-negligible subsets ofΩ. Recall also the completion of A w.r.t. µ:

Aµ :=
{

A ⊆Ω : ∃(E ,F ) ∈A 2, E ⊆ A ⊆ F and µ(F \ E) = 0
}

.

It is known that Aµ ⊇A is still a σ-algebra onΩ.

Show that Aµ = {A ⊆Ω : ∃(E , N ) ∈A ×Nµ, A = E ∪N }.

Solution of Exercise 1.1.8. We proceed by double inclusion. Let A := E ∪N with E ∈A and N ∈Nµ.
There exists B ∈ A such that N ⊆ B and µ(B) = 0. Then E ⊆ E ∪N ⊆ E ∪B =: F ∈ A with µ(F \ E) 6
µ(B) = 0, so A ∈Aµ. Conversely, let A ∈Aµ. Then there exist E ,F ∈A such that E ⊆ A ⊆ F andµ(B) = 0,
where B := F \ E . But N := A \ E ⊆ B ∈A , so we have A = E ∪N with E ∈A and N ∈Nµ. The equality is
thus established. ■

Exercise 1.1.9. Let (Ω,A ,µ) be a measure space and fn : Ω→ [−∞,∞], n ∈ N, be a sequence of
measurable functions such that

f (ω) := lim
n→∞ fn(ω)

exists for µ-almost every ω ∈Ω. We denote by D the domain of the function f .

1. Recall briefly why D ∈A and f : D → [−∞,∞] is measurable.

2. Recall what “µ-almost every” means in general, and here in terms ofΩ\ D .

3. We suppose that fn > 0 for all n ∈N, and that the limit

L := lim
n→∞

ˆ
fn dµ

exists in [0,∞).
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a) What can you say about

ˆ
f dµ? Does it exist, is it finite? What if L = 0?

b) Show with the help of a counterexample that in general,

ˆ
fn dµ 6−→

ˆ
f dµ.

c) What additional sufficient condition on ( fn) would imply

ˆ
fn dµ−→

ˆ
f dµ?

4. We no longer make the assumptions of Question 3, and suppose instead that fn is integrable for
every n ∈N.

a) Show with the help of a counterexample that f is not necessarily integrable.

b) What additional sufficient condition on the sequence ( fn) would guarantee both the inte-

grability of f and the convergence

ˆ
fn dµ−→

ˆ
f dµ?

Solution of Exercise 1.1.9.

1. The domain of f can be written as the inverse image D =Φ−1〈∆〉, where

∆ :=
{

(x, y) ∈ [−∞,∞]2 : x = y
}

is a closed (thus measurable) set of [−∞,∞]2, and Φ := (limsup fn , liminf fn) is a measurable
function fromΩ to [−∞,∞]2 since its components are two measurable functions, e.g.

{ω ∈Ω : limsup fn(ω)> t } = ⋂
n∈N

⋃
k>n

{
ω ∈Ω : fk (ω)> t − 1

n

}
∈A , t ∈R.

Then f : D → [−∞,∞] is measurable because it is the restriction to D ∈ A of the measurable
function limsup fn .

2. We say that a (not necessarily measurable) set A ⊆Ω occurs µ-almost everywhere if its comple-
ment Ω \ A is µ-negligible, i.e, there is N ∈ A with N ⊃ Ω \ A and µ(N ) = 0. Here, “lim fn(ω)
exists for µ-a.e. ω ∈Ω” means that D occurs µ-almost everywhere, which is also equivalent to
µ(Ω\ D) = 0 because D ∈A .

3. a) As measurable nonnegative functions, the integrals (with respect to µ) of f and fn , n ∈N,
are well defined (and nonnegative). Moreover

ˆ
f dµ=

ˆ
liminf fn dµ6 liminf

ˆ
fn dµ= L <∞

by Fatou’s lemma. If L = 0, then the integral of f is 0 and consequently f = 0 µ-almost
everywhere (that is, f = 0 up to a µ-negligible set of points in Ω): indeed, if it were not the
case we would have, by monotonicity of the measure,

lim↑
n→∞

µ

({
ω ∈ D : f (ω)>

1

n

})
= µ

({
ω ∈ D : f (ω) > 0

})> 0,

8
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B. Dadoun 1.1. MEASURE THEORY

hence ˆ
f dµ>

1

n
µ

({
ω ∈ D : f (ω)>

1

n

})
(this is Markov’s inequality1) would be positive for some n ∈N.

b) Take (Ω,A ,µ) := ((0,1),B((0,1)),dx), and fn := n1(0, 1
n ) for n ∈N. Then as n →∞, fn(x) →

0 =: f (x) for every x ∈ (0,1). But Fatou’s inequality is strict here: for all n ∈N,

ˆ
f dµ= 0 < 1 =

ˆ
fn dµ.

c) The integrals converge if ( fn) is a non-decreasing sequence of nonnegative funtions, that
is 06 fn 6 fn+1 for all n ∈N (monotone convergence theorem).

4. a) Take (Ω,A ,µ) := ([−1,1],B([−1,1]),dx), and fn : x 7→ nx/(1+nx2), n ∈ N. These are odd
continuous functions on [−1,1], there are thus integrable with

ˆ
[−1,1]

fn(x)dx = 0 (?)

for all n ∈ N; however the pointwise limit limn→∞ fn(x) = 1{x 6=0}/x is not integrable on
[−1,1], even though here the integrals (?) obviously converge.

b) An additional sufficient condition would be | fn |6 g for every n ∈N, where g ∈ L1(Ω,A ,µ)
is some integrable function (Lebesgue’s dominated convergence theorem). ■

Exercise 1.1.10. Let λ2 denote the Lebesgue measure on (R2,B(R2)), and

D := {(s, s) : s ∈ (0,1)}, E := {(s, s + t ) : s, t ∈ (0,1)}.

Justify that D,E ∈B(R2) and use the translation invariance of λ2 to show that

1. λ2(D) = 0,

2. λ2(E) = 1.

Solution of Exercise 1.1.10. Let f : (s, t ) 7→ t − s. It is a continuous and therefore measurable map.

1. We see that D = {(s, t ) ∈ (0,1)2 : f (s, t ) > 0}∩ {(s, t ) ∈ (0,1)2 : f (s, t ) 6 0}, so D ∈ B(R2). Let Ai :=
( i

n , i
n ) ∈R2. Then for all n ∈N,

D ⊆
n−1⋃
i=0

(
Ai +

[
0,

1

n

]2)
,

so λ2(D)6 nλ2([0, 1
n ]2)6 1

n by translation invariance. Hence λ2(D) = 0.

1a.k.a. Chebyshev’s (first) inequality.
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2. Here E = {(s, t ) ∈ (0,1)×R : f (s, t ) < 1}∩ {(s, t ) ∈ (0,1)×R : f (s, t ) > 0}, so E ∈B(R2). Moreover, E
is the disjoint union E = T1 tS t ((0,1)+T2), where S := (0,1)× {1} is a segment and

T1 := {(s, t ) ∈ (0,1)2 : s < t }, T2 := {(s, t ) ∈ (0,1)2 : t < s}

are triangles (draw a picture). First we have λ2(S) = λ1((0,1))λ1({1}) = 0, and second λ2((0,1)+
T2) =λ2(T2) by translation invariance. Consequently λ2(E) =λ2(T1tT2). As (0,1)2 = T1tT2tD ,
we deduce that λ2(E) = 1. ■

Exercise 1.1.11 (True or false?). Letλ denote the Lebesgue measure on (R,B(R)). Prove or disprove
(with a counterexample) the following statements:

1. Let A ∈B(R).

a) If B ⊆ A then B ∈B(R).

b) If λ(A) =∞ then A is an unbounded set.

c) If λ(A) <∞ then A is a bounded set.

d) If λ(A) = 0 then A is a bounded set.

e) If A is an open set then λ(A) > 0.

f) If λ(A∩ (0,1)) = 1 then A∩ (0,1) is dense in (0,1).

g) If A∩ (0,1) is dense in (0,1) then λ(A∩ (0,1)) > 0.

h) If λ(A) > 0 then A has a non-empty interior.

2. (In the following statements, measurability is meant w.r.t. the Borel σ-field.)

a) If f : R→R is differentiable, then f ′ is measurable.

b) If f1, f2, . . . : R→ R are measurable functions, then the set B := {x ∈R : limn→∞ fn(x) exists}
is measurable.

c) If f : [0,1] → R is such that {x ∈ [0,1] : f (x) = c} is measurable for all c ∈ R, then f is mea-
surable.

Solution of Exercise 1.1.11.

1. a) False, since there exists B ⊂Rwith B ∉B(R).

b) True. If A is a bounded set then there exists r > 0 such that A ⊆ [−r,r ], and therefore
λ(A)6 2r <∞.

c) False, since for instance the unbounded Borel set

∞⊔
n=0

[
n,n + 1

n!

)
has Lebesgue measure e <∞.

d) False, since for instanceQ is an unbounded Borel set with λ(Q) = 0.

10
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B. Dadoun 1.1. MEASURE THEORY

e) False, since ; is an open set with λ(;) = 0. However, any Borel set A ∈ B(R) with non-
empty interior (in particular, any non-empty open set A) must contain some non-empty
interval (a,b), so λ(A)> b −a > 0.

f) True. Indeed λ((0,1) \ A) = 1−λ(A ∩ (0,1)) = 0 so by the previous answer (0,1) \ A cannot
have a non-empty interior, which precisely rephrases that A∩ (0,1) is dense in (0,1).

g) False, sinceQ∩ (0,1) is dense in (0,1) and λ(Q∩ (0,1))6λ(Q) = 0.

h) False, since (0,1) \Q has an empty interior and λ((0,1) \Q) = 1. See also the fat Cantor set
for an example of a nowhere dense set having yet a positive Lebesgue measure.

2. a) True, since f ′ is a limit of measurable functions:

f ′(x) = lim
n→∞

f (x + 1
n )− f (x)

1
n

.
■

b) True, since B = {x ∈R : liminf fn(x) = limsup fn(x)}.

c) False. Let A ⊂ [0,1] be some non-measurable set. Define f : [0,1] → R by f (x) = x if x ∈ A
and f (x) =−x else. Then {x ∈R : f (x) = c} is a subset of {±c}, so measurable (for any c), but
f −1〈[0,1]〉 = A ∉B(R).

Exercise 1.1.12. Let λn denote the Lebesgue measure on (Rn ,B(Rn)). Show that for any hyperplane
H ⊂Rn , λn(H) = 0.

Hint. Show first λn(H0) = 0 for the hyperplane H0 := {(x1, . . . , xn)∈Rn : xn = 0}.

Solution of Exercise 1.1.12. As H0 =Rn−1×{0}, we haveλn(H0) = 0 (could you explain why?). Now if H ⊂
Rn is any hyperplane, there exists a non-zero vector en ∈ Rn such that H ⊕Ren = Rn . Let (e1, . . . ,en−1)
be any basis of H and T : Rn → Rn be the linear isomorphism which maps the standard basis of Rn

onto (e1, . . . ,en). Then
λn(H) =λn(T (H0)) = |det(T )|λn(H0) = 0. ■

Exercise 1.1.13. Let (Ω,A ,µ) be a measure space and f : Ω→ [−∞,∞].

1. We suppose that f ∈ L1(Ω,A ,µ). Show that | f (ω)| <∞ for µ-a.e. ω ∈Ω.

2. We suppose that there is a sequence fn , n ∈N, converging to f in L1(Ω,A ,µ). Show that there is
a subsequence ( fnk ) of ( fn) converging to f µ-a.e., that is

lim
k→∞

fnk (ω) = f (ω)

for µ-a.e. ω ∈Ω.

Solution of Exercise 1.1.13.

11
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A few exercises B. Dadoun

1. By monotonicity of the measure, we have

∀n ∈N, µ({ω ∈Ω : | f (ω)| =∞})6µ({ω ∈Ω : | f (ω)| > n}),

where, applying Markov’s inequality,

µ({ω ∈Ω : | f (ω)| > n})6
‖ f ‖1

n
−−−−→
n→∞ 0.

Hence µ({ω ∈Ω : | f (ω)| =∞}) = 0, that is | f (ω)| <∞ for µ-a.e. ω ∈Ω.

2. Since fn → f in L1(Ω,A ,µ), we can build (by induction on k ∈N) an increasing sequence (nk )k∈N
of integers such that ‖ fnk − f ‖1 < 2−k for all k ∈N. But then by monotone convergence theorem
we have ˆ ( ∞∑

k=1
| fnk − f |

)
dµ=

∞∑
k=1

‖ fnk − f ‖1 <∞,

which using the result of Question 1 implies that the series

∞∑
k=1

| fnk (ω)− f (ω)|

converges for µ-a.e. ω ∈Ω; in particular | fnk (ω)− f (ω)|→ 0 at least for such ω. ■

Exercise 1.1.14. Let a ∈Cwith |a| < 1. Show that the two sums

∞∑
n=1

an

1−a2n
and

∞∑
m=1

a2m−1

1−a2m−1

are well defined and equal.
Hint. Introduce fn,m := an(2m−1) for m,n ∈N and apply Fubini’s theorem.

Solution of Exercise 1.1.14. We see f : (n,m) ∈N2 7→ fn,m ∈C as a measurable function on the product
of the σ-finite measure space (N,P (N),#) with itself, where # is the counting measure. Thenˆ

#(dm)

ˆ
#(dn) | fn,m | def=

∞∑
m=1

∞∑
n=1

(|a|2m−1)n =
∞∑

m=1

|a|2m−1

1−|a|2m−1
,

which is a converging series; indeed

∞∑
m=1

|a|2m−1

1−|a|2m−1
6

1

1−|a|
∞∑

m=1
|a|2m−1 = |a|

(1−|a|)(1−|a|2)
<∞

— we could also check the convergence by the ratio test. Now, theorems of Fubini-Tonelli and Fubini-
Lebesgue say that f is integrable and that we may interchange the orders of summation. The two
sums ∞∑

m=1

∞∑
n=1

fn,m =
∞∑

m=1

a2m−1

1−a2m−1

and ∞∑
n=1

∞∑
m=1

fn,m =
∞∑

n=1
a−n

∞∑
m=1

(a2n)m =
∞∑

n=1

an

1−a2n

are thus well defined and equal. ■
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Exercise 1.1.15. Let (Ω,A ,µ) be a measure space.

1. Let n ∈N and f1, . . . , fn ∈ Ln(Ω,A ,µ). Show that

‖ f1 · · · fn‖1 6
n∏

i=1
‖ fi‖n .

Hint. Proceed by induction and recall Hölder’s inequality.

2. We suppose here that µ = P is a probability measure (i.e, P(Ω) = 1). Show that for every finite
family {A1, . . . , An} ⊆A of events onΩ,

P(A1 ∩·· ·∩ An)6
[
P(A1) · · ·P(An)

]1/n .

Remark. By comparison between arithmetic and geometric means, this inequality is sharper
than the (trivial) inequality

P(A1 ∩·· ·∩ An)6
P(A1)+·· ·+P(An)

n
.

Solution of Exercise 1.1.15.

1. We show by induction on 16 k 6 n that f1 · · · fk ∈ Ln/k (Ω,A ,µ) holds together with the inequal-
ity

‖ f1 · · · fk‖n/k 6
k∏

i=1
‖ fi‖n . (?)

Case k = 1 is trivial. Suppose 26 k 6 n. By induction we know that f1 · · · fk−1 ∈ Ln/(k−1)(Ω,A ,µ).
Now if we apply Hölder’s inequality to the product of ( f1 · · · fk−1)n/k ∈ Lk/(k−1)(Ω,A ,µ) by f n/k

k ∈
Lk (Ω,A ,µ), with the conjugate exponents k/(k −1) and k respectively (as 1

k/(k−1) + 1
k = 1), then

we precisely get that f1 · · · fk ∈ Ln/k (Ω,A ,µ) and

‖ f1 · · · fk‖n/k 6 ‖ f1 · · · fk−1‖n/(k−1)‖ fk‖n ,

which, using the induction hypothesis, gives (?) as desired. This inequality is therefore true for
k = n, what we wanted to show.

2. This follows directly from Question 1 with fi := 1Ai , that is fi (ω) = 1 if ω ∈ Ai and 0 otherwise.
Indeed, ‖ f1 · · · fn‖1 =P(A1 ∩·· ·∩ An) and ‖ fi‖n =P(Ai )1/n . ■

Exercise 1.1.16. Let (Ω,A ,µ) be a measure space. We suppose that there exists a measurable func-
tion f : Ω→ (0,∞) such that f and 1/ f are integrable (w.r.t. µ). Prove that µ is finite.

Solution of Exercise 1.1.16. We have 16 1
2 (x + 1

x ) for all x > 0. Therefore, by linearity of

ˆ
,

µ(Ω) =
ˆ
Ω

1dµ6
1

2

(ˆ
Ω

f dµ+
ˆ
Ω

1

f
dµ

)
< ∞.

■

13
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Exercise 1.1.17. Let (Ω,A ,µ) be a σ-finite measure space and f : Ω → [0,∞] be a measurable
function. Let Et := {ω ∈Ω : f (ω) > t } for each t > 0. Prove thatˆ

Ω

f dµ=
ˆ

(0,∞)
µ(Et )dλ1(t ).

Solution of Exercise 1.1.17. Note that f is a nonnegative measurable function and for all t > 0,

µ(Et ) =
ˆ
Ω

1{ f (ω)>t }µ(dω). Therefore, by Fubini–Tonelli’s theorem,

ˆ
(0,∞)

µ(Et )dλ1(t ) =
ˆ
Ω

(ˆ
(0,∞)

1{ f (ω)>t } dλ1(t )

)
µ(dω)

=
ˆ
Ω

(ˆ
(0, f (ω))

dλ1

)
µ(dω)

=
ˆ
Ω

f dµ. ■

Exercise 1.1.18.

1. Compute the double integral Ï
(0,∞)2

dλ2(x, y)

(1+ y)(1+ y x2)
.

2. Deduce that ˆ
(0,∞)

log x

x2 −1
dλ1(x) = π2

4
.

Hint. Observe that
1

(1+ y)(1+x2 y)
= 1

x2 −1

(
x2

1+ y x2 − 1

1+ y

)
.

3. Show that ˆ
(0,1)

log x

x2 −1
dλ1(x) = π2

8
.

Solution of Exercise 1.1.18.

1. The integrand is positive and continuous as a function of (x, y) ∈ (0,∞)2, so the integral is well
defined. Applying Fubini–Tonelli’s theorem givesÏ

(0,∞)2

dλ2(x, y)

(1+ y)(1+ y x2)
=
ˆ

(0,∞)

1

1+ y

(ˆ
(0,∞)

dλ1(x)

1+ y x2

)
dλ1(y)

=
ˆ

(0,∞)

dλ1(y)

1+ y

[
arctan(x

p
y)

p
y

]x→∞

x=0

=π
ˆ

(0,∞)

dλ1(y)

2
p

y(1+ y)

= π2

2
,

where the last integral is easily computed by substituting u to
p

y .

14
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B. Dadoun 1.1. MEASURE THEORY

2. Tonelli’s theorem gives alsoÏ
(0,∞)2

dλ2(x, y)

(1+ y)(1+ y x2)
=
ˆ

(0,∞)

dλ1(x)

x2 −1

ˆ
(0,∞)

(
x2

1+ y x2
− 1

1+ y

)
dλ1(y)

=
ˆ

(0,∞)

dλ1(x)

x2 −1

[
log

(
1+ y x2

1+ y

)]y→∞

y=0

= 2

ˆ
(0,∞)

log x

x2 −1
dλ1(x),

and we conclude by the result of Question 1.

3. The change of variable y = 1/x from (0,1) to (1,∞) yieldsˆ
(0,1)

log x

x2 −1
dλ1(x) =

ˆ
(1,∞)

log y

y2 −1
dλ1(y),

and we conclude using Question 2 and the linearity of

ˆ
. ■

Exercise 1.1.19. Let f : R2 → [0,∞) be a measurable function, and

I :=
Ï

(0,1)2

f
(√

−2logu cos(2πv),
√

−2logu sin(2πv)
)

dλ2(u, v).

Show that

I =
Ï
R2

f (x, y)
e− x2+y2

2

(
p

2π)2
dλ2(x, y).

Solution of Exercise 1.1.19. Clearly, the integrand in I is a nonnegative measurable function of (u, v).
We make first the change of variable (r,θ) = (

√−2logu,2πv) =:ϕ(u, v) which is a C 1-diffeomorphism

from (0,1)2 onto (0,∞)× (0,2π) (the inverse map is given by ϕ−1(r,θ) = (e−r 2/2,θ/2π)). We have

det(Dϕ(u, v)) =

∣∣∣∣∣∣∣
− 1

ur
0

0 2π

∣∣∣∣∣∣∣= −
(

e−r 2/2

2π
r

)−1

,

so (by the change of variable formula)

I =
Ï

(0,∞)×(0,2π)

f (r cos(θ),r sin(θ))
e−r 2/2

2π
r dλ2(r,θ).

This is an integral in polar form which we finally rewrite into cartesian coordinates with the classical
transformation (x, y) = (r cosθ,r sinθ) (polar coordinates). Then

I =
Ï
R2

f (x, y)
e− x2+y2

2

(
p

2π)2
dλ2(x, y)

as stated. ■
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Exercise 1.1.20.

1. Let t > 0. Show that

ˆ
(0,t )

sin x

x
dλ1(x) =

ˆ
(0,∞)

(ˆ
(0,t )

e−x y sin x dλ1(x)

)
dλ1(y).

2. Deduce that

ˆ
(0,t )

sin x

x
dλ1(x) =

ˆ
(0,∞)

1−e−t y (y sin t +cos t )

1+ y2
dλ1(y)

for all t > 0, and conclude that

lim
t→∞

ˆ
(0,t )

sin x

x
dλ1(x) = π

2
.

Hint. Apply (properly!) the dominated convergence theorem.

3. Is the function x 7→ sin x

x
Lebesgue-integrable on (0,∞)?

Solution of Exercise 1.1.20.

1. The map f : (x, y) 7→ e−x y sin x is (jointly) measurable since it is continuous in (x, y). Fubini–
Tonelli’s theorem shows thatÏ

(0,t )×(0,∞)

| f (x, y)|dλ2(x, y) =
ˆ

(0,t )

(ˆ
(0,∞)

e−x y dλ1(y)

)
|sin x|dλ1(x)

=
ˆ

(0,t )

|sin x|
x

dλ1(x)

<∞

(there is no divergence at 0 because we may extend x 7→ |sin x|
x continuously with the value 1).

Therefore f is integrable on (0, t )× (0,∞) and by Fubini–Lebesgue’s theorem we can compute
the integral in any order:

ˆ
(0,t )

(ˆ
(0,∞)

f (x, y)dλ1(y)

)
dλ1(x) =

ˆ
(0,∞)

(ˆ
(0,t )

f (x, y)dλ1(x)

)
dλ1(y).

But this is exactly

ˆ
(0,t )

sin x

x
dλ1(x) =

ˆ
(0,∞)

(ˆ
(0,t )

e−x y sin x dλ1(x)

)
dλ1(y).
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2. The first part is easy: writing ℑz for the imaginary part of z ∈C, we haveˆ
(0,t )

e−x y sin x dλ1(x) =ℑ
(ˆ

(0,t )
e(−y+i )x dλ1(x)

)
=−ℑ

(
y + i

1+ y2

[
e(−y+i )x

]x=t

x=0

)

= 1−e−t y (y sin t +cos t )

1+ y2

for all (real) y > 0. Now, for any sequence of positive reals (tn)n∈N going to infinity, the sequence
of measurable maps on (0,∞)

fn : y 7→ 1−e−tn y (y sin tn +cos tn)

1+ y2
, n ∈N

i) converges pointwise to the function g : y 7→ 1
1+y2 , and ii) is dominated by the integrable func-

tion 2g , so we may apply the dominated convergence theorem. We getˆ
(0,tn )

sin x

x
dλ1(x) =

ˆ
(0,∞)

fn(y)dλ1(y)

−−−−→
n→∞

ˆ
(0,∞)

g (y)dλ1(y) =
[

arctan y
]y→∞

y=0
= π

2
,

and as this is true for any sequence (tn)n∈N going to ∞, the result follows.

3. No, it is not! Indeed, since |sin(x +kπ)| = |sin x| for any integer k, we haveˆ
(0,∞)

|sin x|
x

dλ1(x)>
∞∑

k=1

ˆ
((k−1)π,kπ)

|sin x|
x

dλ1(x)

>
∞∑

k=1

1

kπ

ˆ
((k−1)π,kπ)

|sin x|dλ1(x)

=
∞∑

k=1

1

kπ

ˆ
(0,π)

sin x dλ1(x)

=
∞∑

k=1

2

kπ

=∞. ■

Exercise 1.1.21. Let (Ω,A ,µ) be a measure space and f : Ω→ R be a measurable function. For
p ∈ [1,∞], we set ‖ f ‖p :=∞ if f ∉ Lp (Ω,A ,µ).

1. Let 16 p < q 6∞ and suppose for this question only that µ(Ω) <∞. Show that

‖ f ‖p 6µ(Ω)
1
p − 1

q ‖ f ‖q

(with the convention 1/∞= 0).

Remark. We get Lq (Ω,A ,µ) ⊂ Lp (Ω,A ,µ) (under the above conditions).

17
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2. Suppose that f ∈ Lr (Ω,A ,µ) for some 16 r <∞. Prove that

lim
p→∞‖ f ‖p = ‖ f ‖∞.

Hint. Show liminf
p→∞ ‖ f ‖p > ‖ f ‖∞ using Chebyshev’s inequality.

Solution of Exercise 1.1.21.

1. We assume ‖ f ‖q <∞, otherwise the inequality holds trivially. If q =∞, then the inequality is
clear since | f |6 ‖ f ‖∞ µ-a.e. and

‖ f ‖p
p =
ˆ
Ω

| f |p dµ6
ˆ
Ω

‖ f ‖p
∞ dµ=µ(Ω)‖ f ‖p

∞.

Suppose now q 6= ∞. We apply Hölder’s inequality to the function | f |p ∈ Lq/p (Ω,A ,µ) and the
constant function g ··≡ 1 ∈ Lr (Ω,A ,µ) (sinceµ(Ω) <∞), where 16 r <∞ is such that p/q+1/r =
1:

‖ f ‖p
p = ‖| f |p · g‖1 6 ‖| f |p‖q/p ‖g‖r =µ(Ω)1− p

q ‖ f ‖p
q .

Raising this to the power 1/p yields the desired inequality.

2. Let 0 < ε< ‖ f ‖∞. The set A := {ω ∈Ω : | f (ω)| > ‖ f ‖∞−ε} ∈A has positive measure by definition
of ‖ f ‖∞, and ‖ f ‖p > (‖ f ‖∞−ε)µ(A)1/p by Chebyshev’s inequality, so

liminf
p→∞ ‖ f ‖p > ‖ f ‖∞−ε.

(If µ(A) =∞, then liminf‖ f ‖p =∞ and the above inequality clearly holds.) As ε is arbitrary we
get liminf‖ f ‖p > ‖ f ‖∞. To conclude, it remains to show that limsup‖ f ‖p 6 ‖ f ‖∞. By assump-
tion there exists 16 r <∞ such that ‖ f ‖r <∞. For r < p <∞ we observe that | f |p 6 ‖ f ‖p−r

∞ | f |r
µ-a.e., so ‖ f ‖p 6 ‖ f ‖1−r /p

∞ ‖ f ‖r /p
r and thus

limsup
p→∞

‖ f ‖p 6 ‖ f ‖∞.
■

Exercise 1.1.22. Suppose that (Ω,A ) := (Z,P (Z)) and µ is the counting measure on Z and consider
the sequence space `p := Lp (Ω,A ,µ) for p ∈ [1,∞]. As above, we set ‖ f ‖p :=∞ if f ∉ `p . Show that

‖ f ‖q 6 ‖ f ‖p

whenever 16 p < q 6∞. In particular there is the inclusion `p ⊂ `q .

Solution of Exercise 1.1.22. If q =∞, then clearly ‖ f ‖∞ := supn∈Z | f (n)|6 ‖ f ‖p . Suppose q 6= ∞ and
f 6≡ 0, otherwise there is nothing more to prove. Dividing both sides of the inequality by ‖ f ‖p we may
consider f /‖ f ‖p instead of f and it is therefore equivalent to show that∑

n∈Z
| f (n)|q 6 1

under the assumption ‖ f ‖p = 1. But this is immediate since then | f (n)| 6 1 and, because p < q ,
| f (n)|q 6 | f (n)|p for all n ∈Z. ■
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Exercise 1.1.23. Let p 6= q in [1,∞]. Prove that Lp (R) \ Lq (R) 6= ;.

Solution of Exercise 1.1.23. Actually, for each p ∈ [1,∞], we can give an example of measurable func-
tion f : R→ R such that for all q ∈ [1,∞], f ∈ Lq (R) if and only if q = p. If p =∞, then the constant
function f ··≡ 1 is in L∞(R) but not in Lq (R) for any q ∈ [1,∞). If p 6=∞, let us introduce the measurable
function defined by

f (x) :=
{

0, if x 6 0,

x−1/p (1+ log2 x)−1, if x > 0.

We have | f (x)|p 6 x−1(1+ log2 x)−1 for all x > 0, so

ˆ
R

| f (x)|p λ1(dx)6
ˆ

(0,∞)

λ1(dx)

x(1+ log2 x)
=

[
arctan(log x)

]x→∞
x→0

=π<∞,

hence f ∈ Lp (R). We now show that however f ∉ Lq (R) for any q ∈ [1,∞]\{p}. Since f (x) →∞ as x → 0,
we have f ∉ L∞(R). Let q ∈ (p,∞). Then as x → 0, | f (x)|q = x−q/p (1+ log2 x)−q dominates 2x−r /p for
p < r < q , so there exists α> 0 small enough such that

ˆ
R

| f (x)|q λ1(dx)>
ˆ

(0,α]
| f (x)|q λ1(dx)>

ˆ
(0,α]

x−r /p λ1(dx) =∞.

Suppose finally q ∈ [1, p). Then as x →∞,

ˆ
R

| f (x)|q λ1(dx)>
ˆ

[β,∞)
| f (x)|q λ1(dx)>

ˆ
[β,∞)

x−s/p λ1(dx) =∞.
■

Exercise 1.1.24 (Riesz–Scheffé’s lemma). Let (Ω,A ,µ) be a measure space, and f , f1, f2, . . . ∈ Lp (Ω)
with p ∈ [1,∞). We suppose that, as n →∞, fn(ω) → f (ω) for µ-a.e. ω ∈Ω and that ‖ fn‖p →‖ f ‖p . Let
sign: R→ {−1,1} denote a function such that |x| = (sign x)x for all x ∈R, and write

f ∗
n := fn1{| fn |6| f |} + (sign fn)| f |1{| fn |>| f |}

for every n ∈N.

1. Show that ‖ f ∗
n − f ‖p → 0 as n →∞.

2. Show that ‖ fn − f ∗
n ‖p → 0 as n →∞. Conclude that fn → f in Lp (Ω,A ,µ).

Hint. Use the convexity inequality (y −x)p 6 y p −xp for 06 x 6 y .

Solution of Exercise 1.1.24.

1. First, f ∗
n is obviously measurable, and | f ∗

n |6 | f | with f ∈ Lp (Ω,A ,µ), so the sequence of mea-
surable functions | f ∗

n − f |p , n ∈ N, is dominated by the integrable function 2p | f |p . Second, it
follows from the first assumption that, as n → ∞, | f ∗

n (ω)− f (ω)| → 0 for µ-a.e. ω ∈ Ω. Domi-
nated convergence theorem then entails ‖ f ∗

n − f ‖p → 0 as n →∞.
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2. Clearly,
| fn − f ∗

n | =1{| f |<| fn |}(| fn |− | f |)61{| f |<| fn |}(| fn |− | f ∗
n |)6 | fn |− | f ∗

n |,
so | fn − f ∗

n |p 6 | fn |p − | f ∗
n |p using the indication. Hence, with the result of Question 1 and the

second assumption,

‖ fn − f ∗
n ‖p

p =
ˆ
Ω

| fn − f ∗
n |p dµ6 ‖ fn‖p

p −‖ f ∗
n ‖p

p −−−−→
n→∞ ‖ f ‖p

p −‖ f ‖p
p = 0.

We conclude from Minkowski’s inequality that fn → f in Lp (Ω,A ,µ). ■

Remark. One-line proof:

limsup
n→∞

‖ fn − f ‖p
p = 2p‖ f ‖p

p − liminf
n→∞

ˆ
Ω

[
2p−1(| fn |p +| f |p )−| fn − f |p]︸ ︷︷ ︸

>0 (by convexity)

dµ
(Fatou)
6 0.

Exercise 1.1.25. If f : R→ R is measurable and h ∈ R, we define τh f : x 7→ f (x +h) “the translation
of f by h” which is obviously also measurable. Let 1 6 p < q 6∞ such that 1/p +1/q = 1, f ∈ Lp (R)
and g ∈ Lq (R). Recall that the convolution f ? g of f and g is given by

f ? g (x) :=
ˆ
R

f (y)g (x − y)λ1(dy), λ1-a.e. (?)

1. Show that τh f → f in Lp (R) as h → 0.

Hint. Approximate f smoothly; note that p <∞.

2. In the special case p = 1 (so q =∞), show that the definition in (?) is actually valid everywhere
and makes f ? g be a bounded and uniformly continuous function.

Solution of Exercise 1.1.25.

1. The change of variable y ← y+h easily shows that for any h ∈R, τh f ∈ Lp (R) with ‖τh f ‖p = ‖ f ‖p .
Let g ∈Cc (R) be a continuous function with compact support. Then clearly τh g → g pointwise
as h → 0 (and even uniformly since g is uniformly continuous). A fortiori τh g → g in Lp (R). (This
last assertion follows for instance from the dominated convergence theorem, or from either
Exercise 1.1.21 (Question 1) or Exercise 1.1.24...) Let ε> 0 and recall that p <∞. By the density
theorem in Lp , there exists g ∈Cc (R) such that ‖ f − g‖p 6 ε. Minkowski’s inequality then gives

‖τh f − f ‖p 6 ‖τh f −τh g‖p +‖τh g − g‖p +‖g − f ‖p

= 2‖ f − g‖p +‖τh g − g‖p

6 2ε+‖τh g − g‖p

for any h ∈R. Using what precedes we get

limsup
h→0

‖τh f − f ‖p 6 2ε,

and since ε is arbitrary, we conclude that τh f → f in Lp (R).

20

http://benjamin.dadoun.free.fr/afewexerciseswithsolutions.pdf?c
mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


B. Dadoun 1.1. MEASURE THEORY

2. For all x ∈R, ˆ
R

| f (y)g (x − y)|λ1(dy)6 ‖g‖∞
ˆ
R

| f (y)|λ1(dy) = ‖ f ‖1 ‖g‖∞ <∞,

so the definition of f ?g by (?) is valid everywhere. Furthermore the triangle inequality gives | f ?
g (x)|6 ‖ f ‖1 ‖g‖∞, so f ? g : R→ R is a bounded function. Finally, simple changes of variables
successively lead to

| f ? g (x)− f ? g (y)| =
∣∣∣∣ˆ
R

[ f (t +x)− f (t + y)]g (−t )λ1(dt )

∣∣∣∣
6 ‖g‖∞

ˆ
R

| f (t +x − y)− f (t )|λ1(dt )

= ‖g‖∞ ‖τx−y f − f ‖1

for all x, y ∈ R. Using Question 1, we get that | f ? g (x)− f ? g (y)| vanishes as |x − y | → 0, which
means that f ? g is also uniformly continuous. ■

Exercise 1.1.26. Let λ denote the Lebesgue measure on (R,B(R)). Recall that, by translation invari-
ance of λ, for any E ∈B(R) with λ(E) > 0 the set

E −E := {x − y : x, y ∈ E }

contains some open interval centered at 0: ∃ε > 0, (−ε,ε) ⊂ E −E . In this exercise we suppose that
f : R→R is a measurable function such that

∀(x, y) ∈R2, f (x + y) = f (x)+ f (y). (?)

1. For k ∈N, justify that the set Ek := {x ∈R : | f (x)| < k} is in B(R) and, by observing the identity⋃
k∈N

↑ Ek =R,

show that there exist k ∈N and ε> 0 such that: |x| < ε =⇒ | f (x)| < 2k.

2. Deduce that f (x) → 0 as x → 0.

3. Conclude that f (x) = f (1)x for all x ∈R.

Hint. Use the density ofQ in R.

Solution of Exercise 1.1.26.

1. We have Ek = {x ∈ R : f (x) < k}∩ {x ∈ R : f (x) > −k} ∈ B(R) by the measurability of f . Next,
the observation is clear since Ek ⊆ Ek+1 and any x ∈ R lies in Ek for k ∈ N with k > | f (x)|. By
monotonicity of the measure, we have ∞ = λ(R) = limk→∞λ(Ek ) so in particular there exists
k ∈ N such that λ(Ek ) > 0. Thanks to the recalled result there exists also some ε > 0 such that
(−ε,ε) ⊆ Ek −Ek . This means that when |x| < ε we can find u, v ∈ Ek with x = u − v , and thus

| f (x)| = | f (u − v)| = | f (u)− f (v)|6 | f (u)|+ | f (v)| < 2k

(where the second equality follows easily from (?)).
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2. Property (?) also entails f (r x) = r f (x) if r ∈ Z, and even if r ∈ Q since q f (p/q · x) = f (px) =
p f (x) for all p ∈ Z and q ∈ N. Then with the previous notations we have | f (x)| = | f (qx)|/q 6
2k/q when q|x| < ε, so limsup | f (x)|6 2k/q as x → 0. But the latter holds for any q ∈N; hence
f (x) → 0 as x → 0.

3. Let x ∈R. By the density ofQ inR there exist rational numbers rn ∈Q such that rn → x as n →∞.
Now using the preceding observations and the triangle inequality,

| f (x)−x f (1)| (?)= | f (x)− f (rn)+ rn f (1)−x f (1)|6 | f (x − rn)|+ |rn −x|| f (1)|

where the right-hand side tends to 0 as n →∞, giving f (x) = x f (1). ■

1.2 Linear differential equations

Exercise 1.2.1. Solve (over R) the following systems of linear differential equations:

1.


x ′ = x + z

y ′ =−y − z

z ′ = 2y + z

2.

{
x ′ = 2x − y +4t

y ′ = x +e−t

3.

{
x ′ = cos(t )x − sin(t )y

y ′ = sin(t )x +cos(t )y

Hint. Rewrite the system as a first order differential equation in z := x + i y .

Solution of Exercise 1.2.1.

1. The system can be rewritten as X ′(t ) = AX (t ) where A is the (constant) matrix

A :=
1 0 1

0 −1 −1
0 2 1

.

The characteristic polynomial of A is P (X ) := (X − 1)(X + i )(X − i ). Hence A is diagonalizable
over C, with simple eigenvalues 1, i , −i . Eigenspaces are:

ker(A− I3) =C
1

0
0

, ker(A− i I3) =C
1+ i

1− i
−2

, ker(A+ i I3) =C
1− i

1+ i
−2

,
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from which we deduce a basis of (complex) solutions for the system. The general (complex)
solution has then the form

t 7→αe t

1
0
0

+βe i t

1+ i
1− i
−2

+γe−i t

1− i
1+ i
−2

, α,β,γ ∈C.

The general real solution to the system is obtained by taking the real and imaginary parts:

t 7→λe t

1
0
0

+µ
cos t − sin t

cos t + sin t
−2cos t

+ν
sin t +cos t

sin t −cos t
−2sin t

, λ,µ,ν ∈R.

2. Suppose that (x, y) is a solution. As then x ′ = 2x − y +4t where the right-hand side is C 1, ex-
pression of y ′ we have x ′′ = 2x ′− y ′+ 4 = 2x ′− x + 4− e−t . Two independent solutions to the
associated homogeneous, linear, second order differential equation with constant coefficients
x ′′−2x ′+x = 0 are t 7→ e t and t 7→ te t . Hence the general solution to this homogeneous equation
is of the form

x0 : t 7→ (a +bt )e t ,

where a,b ∈R. To get a solution to the inhomogeneous differential equation x ′′−2x ′+x = 4−e−t ,
there are several methods:

First method. We rewrite the equation and the previous solution into the “first order style”:(
x
x ′

)′
=

(
0 1
−1 2

)(
x
x ′

)
+

(
0

4−e−t

)
, (1.1)

X : t 7→ a

(
e t

e t

)
+b

(
te t

(1+ t )e t

)
. (1.2)

Then we let the constants a and b vary with t in X . We find that X is a solution to (1.1) if
and only if: {

a′(t )e t +b′(t )te t = 0,

a′(t )e t +b′(t )(1+ t )e t = 4−e−t ,

giving (recall Cramer’s rule): {
a′(t ) = te−2t −4te−t ,

b′(t ) = 4e−t −e−2t .

Integrating with respect to t yields:a(t ) = 1
4 e−2t (16(1+ t )e t −2t −1)+ A,

b(t ) = 1
2 e−2t (1−8e t )+B ,

where A,B ∈ R. We now plug this into the first line of (1.2). We deduce that if (x, y) is a
solution to the system, then necessarily x is of the form

x(t ) = 4− 1

4
e−t + (A+B t )e t .
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Now y = 2x −x ′+4t gives:

y(t ) = 4t − 3

4
e−t + (A−B +B t )e t +8.

Since the space of solutions to the system has dimension 2, we have here all the solutions.

Second method. With some intuition we can guess that there should exist a solution to x ′′−
2x ′+ x = 4− e t of the form x(t ) = λ+µe−t . Plugging in we find that λ := 4 and µ :=−1

4 give
indeed a solution. We then add the general solution to the homogeneous equation for x,
and deduce y as in the first method.

Third method. We exploit the matrix notation U ′(t ) = MU (t )+V (t ), where

U (t ) :=
(

x(t )
y(t )

)
, M :=

(
2 −1
1 0

)
, V (t ) :=

(
4t

e−t

)
.

Unfortunately M is not diagonalizable overC. But we may notice (and check by induction)
that for n = 0,1,2, . . .

M n =
(
n +1 −n

n 1−n

)
(or, observe that M = I2 +N with N 2 = 0, and use the binomial theorem). This makes the
exponentiation of M easy. For each t ∈R,

exp(t M) =
∞∑

n=0

t n

n!
M n =

(
(1+ t )e t −te t

te t (1− t )e t

)
.

We then multiply the matrix equation by exp(−t M) ∈GLn(R) to get:

d

dt

[
exp(−t M)U (t )

]
= exp(−t M)

[
U ′(t )−MU (t )

]
= exp(−t M)V (t )

(beware that M does not depend on t ). Therefore

exp(−t M)U (t ) =
ˆ

exp(−t M)V (t )dt +
(

A
B

)
with A,B ∈R (we integrate component-wise), and finally

U (t ) = exp(t M)
[ˆ

exp(−t M)V (t )dt +
(

A
B

)]
.

3. We follow the indication. The system is equivalent to z ′(t ) − e i t z(t ) = 0, or (multiplying by
exp(i e i t ) 6= 0)

d

dt

[
exp(i e i t )z(t )

]
= 0.

Thus the solution is z(t ) =C exp(−i e i t ) =C exp(sin(t )−i cos(t )) with C := A+i B ∈C. We go back
to x and y by taking respectively the real and imaginary parts of z. In conclusion, the general
solution to the system isx(t ) = exp(sin(t )) [A cos(cos(t ))+B sin(cos(t ))],

y(t ) = exp(sin(t )) [B cos(cos(t ))− A sin(cos(t ))],

with A,B ∈R. ■
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Exercise 1.2.2. We consider the following Cauchy problem.

(1+ t 2)x ′′− t (1− t 2)x ′+ (1− t 2)x = 0, (E)

x(0) = 1, x ′(0) = 1.

1. Show that the functions t 7→ At , A ∈R, are solutions to (E) but that none of them is a solution to
the Cauchy problem.

2. Find all solutions to (E) by letting the constant A vary with t .

Hint: −2+ t 2 + t 4

t (1+ t 2)
= 2t

1+ t 2
− t − 2

t
.

Now, solve the Cauchy problem.

Solution of Exercise 1.2.2.

1. The verification is immediate.

2. We look for solutions of the form x(t ) = A(t ) · t . We find that x is a solution to (E) if and only if

(2+ t 2 + t 4)A′(t )+ t (1+ t 2)A′′(t ) = 0.

This is a homogeneous, linear, first order differential equation in A′ where the variables can be
separated:

d

dt

[
log |A′(t )|

]
=−2+ t 2 + t 4

t (1+ t 2)
= 2t

1+ t 2
− t − 2

t
.

Hence A′(t ) = λ(1+ t 2)

t 2
e−t 2/2,

and finally A(t ) = λ

t
e−t 2/2 +µ

with λ,µ ∈R. The general solution to (E) is then of the form

x(t ) =λe−t 2/2 +µt , λ,µ ∈R.

We have x(0) = x ′(0) = 1 if and only if λ = µ = 1. In conclusion, the solution to the Cauchy
problem is

t 7→ e−t 2/2 + t . ■

Exercise 1.2.3. The goal is to find all twice differentiable functions f : R→R such that f (0) = 1 and

∀(s, t ) ∈R2, f (s + t )+ f (s − t ) = 2 f (s) f (t ). (?)

Let f be such a function.

1. Show that f is an even function.
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2. Show that f is a solution to x ′′ =λx for some constant λ ∈R.

3. Conclude.

Solution of Exercise 1.2.3.

1. Substitute 0 for s into the relation (?).

2. On the one hand, differentiating the relation twice with respect to s:

f ′′(s + t )+ f ′′(s − t ) = 2 f (t ) f ′′(s).

On the other hand, differentiating twice with respect to t :

f ′′(s + t )+ f ′′(s − t ) = 2 f (s) f ′′(t ).

As a consequence: f (t ) f ′′(s) = f (s) f ′′(t )

for all s, t ∈R. Fixing s = 0 shows that f is a solution to x ′′ =λx with λ := f ′′(0).

3. We now discuss regarding the sign of λ:

(i) Case λ= 0: so f ′′ = 0, implying f is a linear function t 7→ At +B . Since f (0) = 1 and f is an
even function, necessarily f ≡ 1.

(ii) Case λ < 0: here f ′′ +ω2 f = 0 with ω := p−λ. The general solution to this equation is
t 7→ A cos(ωt )+B sin(ωt ). Since f (0) = 1 and f is an even function, we deduce that f : t 7→
cos(

p−λt ).

(iii) Case λ> 0: similar. We find that f must be equal to t 7→ cosh(
p
λt ).

To summarize, any solution to the problem is necessarily either

t 7→ 1,

or t 7→ cos(at ), a ∈R,

or t 7→ cosh(bt ), b ∈R.

We easily (nevertheless have to) check that these functions are indeed solutions. ■

Exercise 1.2.4. Let A(t ) := (ai , j (t )) ∈ Rn×n be a matrix, and X1(t ), . . . , Xn(t ) ∈ Rn be n solutions to
the linear differential equation

X ′(t ) = A(t )X (t ). (F)

We define

W (t ) :=
[

X1(t )
∣∣∣ X2(t )

∣∣∣ · · · ∣∣∣ Xn(t )
]
∈Rn×n

and

w(t ) := det(W (t )) = det(W1(t ), . . . ,Wn(t )),

where W1(t ), . . . ,Wn(t ) are the rows of the matrix W (t ).
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1. Recalling that the determinant is a multilinear form, prove that

w ′(t ) =
n∑

i=1
det

(
W1(t ), . . . ,Wi−1(t ),W ′

i (t ),Wi+1(t ), . . . ,Wn(t )
)
.

Check also that W ′
i (t ) =∑n

j=1 ai , j (t )W j (t ) for every i = 1, . . . ,n.

2. Recalling that the determinant is an alternating form, deduce that w is a solution to the homo-
geneous, first order, linear differential equation

y ′ = tr(A(t )) y.

3. Prove that either (∀t ∈R, w(t ) = 0) or (∀t ∈R, w(t ) 6= 0), and that the latter happens if and only
if (X1, X2, . . . , Xn) is a basis of solutions to (F).

Hint. Recall the isomorphism X 7→ X (0) from the solutions to (F) onto Rn .

Solution of Exercise 1.2.4.

1. To find w ′(t ) use the expression of the determinant:

w(t ) = ∑
σ∈Sn

ε(σ)W1,σ(1)(t )W2,σ(2)(t ) · · ·Wn,σ(n)(t ),

or more generally, use the n-linearity to establish the following Taylor expansion of w(t +h) as
h → 0:

w(t +h) = det
(
W1(t )+hW ′

1(t )+o(h), . . . ,Wn(t )+hW ′
n(t )+o(h)

)
= w(t )+h

n∑
i=1

det
(
W1(t ), . . . ,Wi−1(t ),W ′

i (t ),Wi+1(t ) . . . ,Wn(t )
)
+o(h).

The expression stated for W ′
i (t ) is a direct consequence to the matrix identity W ′(t ) = A(t )W (t ).

2. The determinant is zero whenever two rows are equal. Therefore, using the n-linearity and the
results of Question 1,

w ′(t ) =
n∑

i=1

n∑
j=1

ai , j (t )det
(
W1(t ), . . . ,Wi−1(t ),W j (t ),Wi+1(t ), . . . ,Wn(t )

)

=
n∑

i=1
ai ,i (t )det

(
W1(t ), . . . ,Wi−1(t ),Wi (t ),Wi+1(t ), . . . ,Wn(t )

)
= tr(A(t )) w(t ).

3. It therefore follows that w(t ) = w(0)exp(
´ t

0 tr(A(s))ds), so either w ≡ 0 (w(0) = 0), or w has no
zeros (w(0) 6= 0). Moreover, the existence and uniqueness of a solution to the Cauchy problem
{X ′(t ) = A(t )X (t ), X (0) = X0} for any X0 ∈ Rn shows that Φ : X 7→ X (0) is an isomorphism from
the space of solutions to (F) onto Rn . Clearly,

(X1, . . . , Xn) basis of solutions to (F) ⇐⇒ (Φ(X1), . . . ,Φ(Xn)) basis of Rn

⇐⇒ (X1(0), . . . , Xn(0)) basis of Rn

⇐⇒ w(0) 6= 0

⇐⇒ ∀t ∈R, w(t ) 6= 0. ■
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PROBABILITY

2.1 Combinatorial probability

Exercise 2.1.1. In an urn, there are 17 green, 5 blue, and 11 red, indistinguishable balls. Answer the
following questions (specify in each case the probability space):

1. We pick two balls simultaneously (without replacement). What is the probability that none of
these balls is red?

2. We pick three balls one after the other, with replacement. What is the probability that at most
two of these balls are green?

Solution of Exercise 2.1.1. We label the green balls G := {1, . . . ,17}, the blue balls B := {18, . . . ,22} and
the red balls R := {23, . . . ,33}.

1. We can take
Ω := {subsets of G∪B∪R having two elements}.

which has |Ω| = (33
2

)
elements. The subsetΩ1 := {ω ∈Ω : ω∩R=;} of outcomes where no red ball

is picked has |Ω1| =
(22

2

)
elements (where 22 = |G∪B|), hence the probability P (Ω1) = |Ω1|/|Ω| =

7/16.

2. Since balls are replaced in the urn, we now model the experiment by

Ω := (G∪B∪R)3,

which has 333 elements. The subset Ω2 :=Ω\G3 of outcomes where at most two green balls are
picked has |Ω2| = 333 −173 elements, hence the probability P (Ω2) = |Ω2|/|Ω| = 1− (17/33)3. ■

Exercise 2.1.2. We consider a 5-card hand from a traditional deck of 52 cards. Specify the probability
space and find the probability that the hand contains...
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1. five cards of the same suit;

2. four cards of the same rank;

3. five cards of sequential rank (the aces having both the lowest and highest ranks);

4. three cards of the same rank and two other cards of another rank.

Solution of Exercise 2.1.2. Setting R := {1, . . . ,13} for the ranks and S := {A,B ,C ,D} for the suits, we can
take

Ω := {subsets of R×S with 5 elements},

which contains |Ω| = (52
5

)
outcomes (all possible hands).

1. Let s denote the projectionR×S→ S. The subset of outcomes where all cards have the same suit
is Ω1 := {ω ∈Ω : s(ω) ∈ {{A}, {B}, {C }, {D}}, which contains |Ω1| = 4 · (13

5

) = 5148 elements. Hence
the probability

P (Ω1) = |Ω1|
|Ω| = 33

16660
.

2. Let r denote the projection R×S→R. The subset of outcomes with four cards of the same rank
is Ω2 := {ω ∈Ω : ∃h ∈ ω, r (ω \ {h}) ∈ {{1}, . . . , {13}}}, which contains |Ω2| = 13 ·48 = 624 elements
(fixing the rank, there are 48 possibilities for the fifth card). Hence the probability

P (Ω2) = |Ω2|
|Ω| = 1

4165
.

3. The possible sequences of ranks are

S := {{1,2,3,4,5}, {2,3,4,5,6}, . . . {9,10,11,12,13}, {10,11,12,13,1}}.

Fixing the first component i ∈ {1, . . . ,10} of such sequences and choosing the suit of each card,
there are 45 ways to obtain {i , i + 1, . . . , i + 4} (identifying the ranks 1 and 14 of the aces). We
deduce that the subset Ω3 := {ω ∈Ω : r (ω) ∈ S } of outcomes with five cards of sequential rank
contains |Ω3| = 10 ·45 = 10240 elements. Hence the probability

P (Ω3) = |Ω3|
|Ω| = 128

32487
.

4. There are
(4

3

)
ways of combining three cards of a given rank, and 12 ·(4

2

)
pairs of some other rank,

so the subset Ω4 ⊆ Ω of outcomes having three cards of the same rank and two other cards of
another rank has |Ω4| = 13 · (4

3

) ·12 · (4
2

)= 3744 elements. Hence the probability

P (Ω4) = |Ω4|
|Ω| = 6

4165
.

■

Exercise 2.1.3. Let X be a Poisson random variable with parameter λ> 0, that is

P(X = k) = e−λλ
k

k !
, for k = 0,1,2, . . .
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1. Show that E[X ] =λ.

2. Show that Var(X ) =λ.

Solution of Exercise 2.1.3.

1. Clearly,

E[X ]
def=

∞∑
k=1

kP(X = k) =λe−λ ∞∑
k=0

λk

k !
=λ.

2. Using the equality above,

Var(X )
def= E[X 2]−E[X ]2

=
∞∑

k=1
k2 e−λλ

k

k !
−λ2

=
∞∑

k=0
(k +1)e−λλ

k+1

k !
−λ2

=λE[X ]+λ−λ2

=λ. ■

Exercise 2.1.4. Let n ∈N, x ∈ [0,1] and Xn be a random variable having the binomial distribution
with parameter (n, p), that is

P(Xn = k) =
(

n

k

)
pk (1−p)n−k , k = 0,1,2, . . . ,n.

1. Show that E[Xn] = np.

2. Show that Var(Xn) = np(1−p).

Solution of Exercise 2.1.4.

1. Recall that k
(n

k

)= n
(n−1

k−1

)
. Hence

E[Xn]
def=

n∑
k=1

kP(X = k) = n
n−1∑
k=0

(
n −1

k

)
pk+1(1−p)n−1−k = np(p +1−p)n−1 = np.

2. Using what precedes,

Var(Xn)
def= E[X 2]−E[X ]2

=
n∑

k=1
k2

(
n

k

)
pk (1−p)n−k −n2p2

= n
n−1∑
k=0

(k +1)

(
n −1

k

)
pk+1(1−p)n−1−k −n2p2

= np(1+E[Xn−1])−n2p2

= np(1−p).
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Remark. Another way to prove the above statements is to say that Xn just counts the number of
successes in a sequence of n independent Bernoulli trials, i.e, Xn = Y1 + ·· · +Yn with Y1, . . . ,Yn i.i.d.
Bernoulli(p) random variables. Then by linearity of Ewe have E[Xn] = nE[Y1] = n(1·p+0·(1−p)) = np,
and further, because of independence, Var(Xn) = nVar(Y1) = np(1−p) (indeed Var(Y1) = E[Y1]−E[Y1]2

since Y 2
1 = Y1). ■

Exercise 2.1.5. Show that C := {[a,b) : a,b ∈Q} generates the Borel σ-algebra B(R) of R.

Solution of Exercise 2.1.5. Recall that B(R) is the σ-algebra generated by the topology of R. Clearly,
σ(C ) ⊆ B(R). Conversely, since open sets are countable union of open intervals and σ-algebras are
stable by countable unions, we just need to show that σ(C ) 3 (a,b) for every −∞ 6 a < b 6∞. By
density of Q in R, there exist a sequence (an)n∈N of rational numbers decreasing to a, and a sequence
(bn)n∈N of rational numbers increasing to b. Then

(a,b) = ⋃
n∈N

[an ,bn)︸ ︷︷ ︸
∈C

∈σ(C ).

■

Exercise 2.1.6. Let C := {Ci }16i6n be a finite partition of Ω, i.e, Ω = ⋃n
i=1 Ci with C1, . . . ,Cn all non-

empty and pairwise disjoint. Describe σ(C ), the smallest σ-algebra containing C .

Solution of Exercise 2.1.6. Sinceσ(C ) is aσ-algebra containing C1, . . . ,Cn , it must also contain all pos-
sible unions of these, namely the sets

C (I ) := ⋃
i∈I

Ci , I ⊆ {1,2, . . . ,n} =: [n].

Let A := {C (I ) : I ⊆ [n]}. We show that conversely, A ⊇ σ(C ). By minimality, it suffices to show that
A ⊇C and A is a σ-algebra. The first point is clear because Ci =C ({i }) ∈A for every i ∈ [n]. For the
second point, we check the three requirements of the definition:

(i) A contains C ([n]) =Ω;

(ii) A is stable by complement sinceΩ\C (I ) =C ([n] \ I ) for every I ⊆ [n];

(iii) A is stable by countable union since
⋃

k∈NC (Ik ) =C (
⋃

k∈N Ik ) for any Ik ⊆ [n].

Hence σ(C ) =A . (This σ-algebra has 2n elements.) ■

Exercise 2.1.7. Let (Ω,A ,P ) be a probability space.

1. Let A,B be two events, and its symmetric difference A∆B := (A ∪B) \ (A ∩B). Prove using the
axioms of probability that

|P (A)−P (B)|6 P (A∆B).

2. Let An ,n > 1, be a sequence of events with P (An) = 1 for every n. Prove that

P

( ⋂
n>1

An

)
= 1.
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Solution of Exercise 2.1.7.

1. We observe that A ⊆ (A∆B) ∪ B . We deduce that P (A) 6 P (A∆B) + P (B), i.e, P (A) − P (B) 6
P (A∆B). We conclude by exchanging the roles of A and B .

2. First note that P (A1 ∩ A2) = P (A1)+P (A2)−P (A1 ∪ A2)> 1+1−1 = 1. Iterating, we deduce that
P (Bn) = 1 for Bn :=⋂

16k6n Ak , n > 1. Then, by a consequence of the σ-additivity property,

P

( ⋂
n>1

An

)
= P

(⋂↓
n>1

Bn

)
= lim↓

n→∞
P (Bn) = 1.

Remark. Alternatively we could have applied the so called “union bound” (which also follows
from the axiom of σ-additivity):

1−P

( ⋂
n>1

An

)
= P

( ⋃
n>1

AÙ
n

)
6

∑
n>1

P (AÙ
n) = 0.

■

Exercise 2.1.8. Let X be a random variable with values inN. Prove that

E[X ] =
∞∑
`=1

P(X > `)

(with the convention that E[X ] =∞ in case the first moment of X does not exist).

Solution of Exercise 2.1.8. The summands are nonnegative, so

∞∑
`=1

P(X > `) =
∞∑
`=1

∞∑
k=`

P(X = k)

=
∞∑
`=1

∞∑
k=1

1{k>`}P(X = k)

(Fubini–Tonelli) =
∞∑

k=1
P(X = k)

∞∑
`=1

1{`6k}

=
∞∑

k=1
kP(X = k)

= E[X ].

Remark. This is a particular case of Exercise 1.1.17. ■

2.2 Distributions, independence

Exercise 2.2.1. Suppose a distribution function F is given by

F (x) = 1

4
1[0,∞)(x)+ 1

2
1[1,∞)(x)+ 1

4
1[2,∞)(x).

Let P be the probability measure, P ((−∞, x]) := F (x), x ∈R. Find the probability of:

33

mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


A few exercises B. Dadoun

A = (−12,12), B = (−12,32), C = (23,52), D = [0,2), E = (3,∞).

Solution of Exercise 2.2.1. Using that P ((a,b)) = F (b−)−F (a) and P ([a,b)) = F (b−)−F (a−), we find
P (A) = 1, P (B) = 1, P (C ) = 0, P (D) = 3/4 and P (E) = 0. ■

Exercise 2.2.2. For each point U 6= N on the circle with center C (0;1/2) and diameter 1 below, the
line (NU ) intersects the real axis at a unique point — we call X its abscissa:

R

×
C

•N

•
S (0;0)

•U

Θ

•
X

We suppose that U has a uniform distribution, namely we consider that the measureΘ of the oriented
angle (

#  —
C S;

#   —
CU ) is uniformly distributed on (−π,π).

Show that X has the standard Cauchy distribution.

Solution of Exercise 2.2.2. By the inscribed angle theorem, a measure of (
#   —
N S,

#    —
N X ) is Θ/2. Since N S =

1, the abscissa X is then given by X = tan(Θ/2), where Θ/2 is uniformly distributed on the interval
(−π

2 , π2 ). As a result, X has the standard Cauchy distribution — indeed, for every bounded continuous
function g : R→R,

E[g (X )] = E[g (tan(Θ/2))] =
ˆ π

−π
g (tan(θ/2))

dθ

2π
=
ˆ
R

g (x)
dx

π(1+x2)
.

■

Exercise 2.2.3. Let X ,Y be two independent Bernoulli(1/2) r.v. and Z := 1
2

(
1+ (−1)X+Y

)
.

1. Show that Z is a Bernoulli(1/2) r.v. which is independent of X and of Y .

2. Check that Z is not independent of (X ,Y ).

Solution of Exercise 2.2.3.

1. Clearly, P(Z = 1) = P(X = Y ) = 1/2 so Z is a Bernoulli(1/2) r.v. Observing that {Z = 1, X = 1} =
{X = 1}∩ {Y = 1}, it is also clear that Z is independent of X . Symmetrically, Z is independent
of Y as well.

2. However P(Z = 1,(X ,Y ) = (0,1))= 0 6= 1
8 = P(Z = 1)P((X ,Y ) = (0,1)), so Z is not independent of

(X ,Y ). ■

Exercise 2.2.4.
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1. Let X1, X2, . . . be identically distributed real r.v. and N be a N0-valued r.v. We suppose N and X`

independent for each ` ∈N, and that E[|X1|] <∞, E[N ] <∞. Let the random sum

S(ω) :=
N (ω)∑
`=1

X`(ω), ω ∈Ω.

Show that S is integrable and E[S] = E[N ]E[X1].

Hint. Recall Exercise 2.1.8.

2. With one initial bet of 50 CHF, you are allowed to roll two fair traditional dice. Each time the sum
of the two faces up is greater than or equal to 7, you win either 30 CHF or 40 CHF depending on
the result of a fair coin toss, and moreover you can roll the dice again. If however the sum is less
than 7, then the game is over. Is this game favorable to you?

Solution of Exercise 2.2.4.

1. We observe that S = lim
n→∞

n∑
`=1

1{`6N }X`, where

∣∣∣∣∣ n∑
`=1

1{`6N }X`

∣∣∣∣∣6 ∞∑
`=1

1{`6N }|X`| (4-inequality + monotonicity)

for every n ∈N, with further

E

[ ∞∑
`=1

1{`6N }|X`|
]
=

∞∑
`=1

E
[
1{`6N }|X`|

]
(monotone convergence theorem)

=
∞∑
`=1

P(N > `)E[|X`|] (N and X` independent)

= E[|X1|]
∞∑
`=1

P(N > `) (X1, X2, . . . equally distributed)

= E[N ]E[|X1|] (Exercise 2.1.8)

< ∞.

It thus follows from the dominated convergence theorem that S is integrable and

E[S] = lim
n→∞

n∑
`=1

E
[
1{`6N }X`

]
.

Repeating the last three equalities above (without the |·|), we obtain E[S] = E[N ]E[X1].

Remark. This formula is known as Wald’s identity.

2. Let S be the amount you would win in total. The sum of two dice is greater than or equal to 7 with
probability 21/36 = 7/12, so the number N ∈ {0,1,2, . . .} of times you would win either 30 CHF
or 40 CHF has the geometric distribution with (success) parameter 5/12; thus

E[N ] =
∞∑

k=0
k

(
7

12

)k

· 5

12
= 7

5
.
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The part Xk you would get at time k = 1,2, . . . is uniformly distributed on {30,40} and has there-
fore mean 35. Further, S = X1+·· ·+XN where N is independent of X1, X2, . . . The result of Ques-
tion 1 then applies and

E[S] = E[N ]E[X1] = 7

5
·35 = 49 < 50.

On average, the game is not favorable to the player. ■

Exercise 2.2.5. For any real r.v. X , let FX denote its cumulative distribution function.

1. Check that lim
t→−∞FX (t ) = 0 and lim

t→∞FX (t ) = 1.

2. Let X and Y be two independent r.v. having the exponential distribution with rates λ > 0 and
µ> 0 respectively, e.g.

FX (t ) =
{

1−e−λt , if t > 0,

0, otherwise.

a) Let θ > 0. Show that θX has the exponential distribution with rate λ/θ.

b) Show that Z := min(X ,Y ) has the exponential distribution with rate λ+µ.

3. Let X , X1, X2, . . . be i.i.d. real r.v. We suppose that for every n ∈N, the r.v. Zn := n min(X1, . . . , Xn)
has the same law as X and we note S := 1−FX .

a) Show that S(nt ) = S(t )n for every n ∈N and every t ∈R.

b) Deduce that P(X < 0) = 0, and S(r ) = S(1)r for every rational r > 0.

c) Show that if S(1) = 0, then P(X = 0) = 1.

d) Assume now S(1) 6= 0. Show then that 0 < S(1) < 1, and conclude that X has the exponential
distribution with rate log(1/S(1)).

Solution of Exercise 2.2.5.

1. Using that X has values in R, and monotonicity (of P, and F ), we have

0 = P(X =−∞) = P

( ⋂
n∈N

{X 6−n}

)
= lim

n→∞FX (−n) = lim
t→−∞FX (t ).

Similarly, lim
t→∞FX (t ) = 1.

2. a) This fact is immediately derived from the identity FθX (·) = FX (·/θ).

b) For every t ∈R,

1−FZ (t ) =P(
min(X ,Y ) > t

)=P(X > t ,Y > t ) = (
1−FX (t )

)(
1−FY (t )

)
(the last equality holds by independence), so 1−FZ (t ) = min(1,e−(λ+µ)t ). Hence Z has the
exponential distribution with rate λ+µ.
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3. a) Similarly to Question 2, for every t ∈R,

S(nt ) =P(
Zn min(X1, . . . , Xn) >Znt

)=P(
X1 > t , . . . , Xn > t

)= S(t )n ,

where the last equality holds because X1, . . . , Xn are i.i.d. r.v. with common distribution
function FX = 1−S.

b) For t < 0, Question 1 entails that S(nt ) = S(t )n must tend to 1 as n →∞, and since S(t ) ∈
[0,1], this forces S(t ) = 1, i.e, FX (t ) = 0. Taking the limit as t → 0− yields P(X < 0) =
FX (0−) = 0. Now with t = 1/n, we have first S(1) = S(1/n)n , and second S(m/n) = S(m ·
1/n) = S(1/n)m = S(1)m/n for arbitrary m,n ∈N.

c) If S(1) = 0, then S(1/n) = S(1)1/n = 0 for each n ∈ N gives S(0) = 0 by right-continuity, i.e,
P(X 6 0) = 1. Because P(X < 0) = 0 by Question 3.b), we deduce that P(X = 0) = 1.

d) Assume S(1) 6= 0, so S(1) > 0. The fact that S(n) = S(1)n must tend to 0 as n →∞ (Ques-
tion 1) forces S(1) < 1. Hence λ := log(1/S(1)) ∈ (0,∞). Now for each t > 0, there is a
sequence (rn) of positive rational numbers decreasing toward t as n → ∞. The identity
S(rn) = S(1)rn = exp(−λrn) for each n ∈ N implies S(t ) = exp(−λt ) by right-continuity.
We conclude that X has the exponential distribution with rate log(1/S(1)). (Conversely,
by Question 2, if X1, X2, . . . are i.i.d. Exp(λ)-distributed r.v. for some λ > 0, then indeed
n min(X1, . . . , Xn) is also Exp(λ)-distributed for every n ∈N.) ■

Exercise 2.2.6. Let A and B be two points picked independently and uniformly inside the unit disk
D := D(0;1). Write Z := |AB | for the distance between A and B . Find the probability that the disk
D(A, Z ) with center A and radius Z lies inside D .

Solution of Exercise 2.2.6. We begin with a picture:

×
O

×
A1− r A

We can see that “the disk of center A and radius Z = |AB | lies inside D” means exactly “B belongs
to the disk of center A and radius 1− r A”. As B is uniformly distributed, for each fixed value a of the
random variable A, this has probability

dashed area

green area
= π(1− ra)2

π
= (1− ra)2.
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By independence between A and B , we just need to integrate this with respect to the law of r A. Let us
find it: for every bounded continuous function g : R→R,

E[g (r A)] =
ˆ
R2

g

(√
x2 + y2

)
1

π
1{x2+y261} dxdy︸ ︷︷ ︸

density function of A

=
ˆ ∞

0

ˆ 2π

0
g (r )

1

π
1{r61} r dθdr (polar coordinates)

=
ˆ ∞

0
g (r )

(
2r1{r61}

)
dr.

Hence the real random variable r A admits the density 2r1{r61}, r > 0. The desired probability is there-
fore ˆ

R

(1− ra)2 Pr A (dra) =
ˆ ∞

0
(1− r )2 2r1{r61} dr =

ˆ 1

0
2r (1− r )2 dr = 1

6
.

■

Exercise 2.2.7. Let X be a geometric random variable with parameter p ∈ [0,1], that is

P(X = k) = (1−p)k−1p, k = 1,2, . . .

1. Compute the c.d.f. of X .

2. Let q ∈ [0,1] and Y be a Geometric(q) random variable independent of X . Show that Z :=
min(X ,Y ) has the geometric distribution with parameter 1− (1−p)(1−q).

Solution of Exercise 2.2.7.

1. Because X is integer-valued, P(X 6 t ) =P(X 6 btc) = 1− (1−p)btc (geometric sum), for all t > 0.

2. By independence and Question 1, P(Z 6 t ) = 1−P(X > t )P(Y > t ) = 1− (
(1−p)(1−q)

)btc for all
t > 0, that is the c.d.f. of a geometric distribution with parameter 1− (1−p)(1−q). ■

Exercise 2.2.8.

1. Give an example of c.d.f. having an infinite number of discontinuities.

2. Show that every c.d.f. has at most countably many discontinuities.

3. Let X ,Y be random variables with c.d.f. F,G respectively, and B be a Bernoulli(1/2) r.v. indepen-
dent of X and of Y . Compute the c.d.f. of Z := B X + (1−B)Y .

Solution of Exercise 2.2.8.

1. For instance, the c.d.f. of a geometric distribution has a discontinuity at any t ∈N.
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2. We first show a lemma: Let µ be a probability measure and (At )t∈I be a sequence of pairwise
disjoint events with µ(At ) > 0 for all t ∈ I . Then I is at most countable.

Indeed, the set

Ik :=
{

t ∈ I : µ(At ) ∈
(

1

k +1
,

1

k

]}
,

cannot have more than k elements (otherwise, if t1, . . . , tk+1 ∈ Ik are distinct then 1>µ(
⋃k+1

i=1 Ati ) =∑k+1
i=1 µ(Ati ) > 1 E). Therefore I =⋃

k∈N Ik is at most countable.

Let now F be any c.d.f. and P the associated probability measure on R. Applying the lemma to
µ := P , I := {t ∈ R : F (t )−F (t−) > 0}, and At := {t }, t ∈ I , shows that the set I of discontinuities
of F , is at most countable.

3. Partitioning w.r.t. the values of B and using independence,

P(Z 6 t ) =P(B = 1, Z 6 t )+P(B = 0, Z 6 t )

=P(B = 1, X 6 t )+P(B = 0,Y 6 t )
⊥⊥= P(B = 1)P(X 6 t )+P(B = 0)P(Y 6 t )

= F (t )+G(t )

2
. ■

Exercise 2.2.9 (True or false?). Prove, or disprove (by giving a counterexample), briefly the following
statements. We consider real r.v. on some general probability space (Ω,A ,P).

1. About the laws of random variables.

a) For every measurable function f : R→R,

b) If P(X = t ) =P(Y = t ) for all t ∈R, then P(X = Y ) = 1.

c) If P(X 6 t ) =P(Y 6 t ) for all t ∈R, then P(X = Y ) = 1.

d) If P(X = t ) =P(Y = t ) for all t ∈R, then X and Y have the same law.

e) If X and Y have same law and X > 0 a.s., then Y > 0 a.s.

f) If X and Y have same law, then P(X < Y ) =P(X > Y ).

g) If X and Y have same law and X ∈ L1(P), then Y ∈ L1(P) and E[X ] = E[Y ].

h) If X and Y have same law, then X +Z and Y +Z also have same law.

2. About independence.

a) If E[X Y ] = E[X ]E[Y ], then X and Y are independent.

b) If X and Y are independent, then P(X = Y ) = 0.

c) If X and Y are independent, then P(X = Y ) < 1.

d) If Z is independent of both X and Y , then Z is independent of (X ,Y ).

e) If X ,Y are independent, then so are f (X ), g (Y ) for f , g : R→Rmeasurable.
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Solution of Exercise 2.2.9.

1. a) False: E[ f (X )] is generally defined in R (resp. in [0,∞]) for f (X ) ∈ L1(P) (resp. f > 0). For
instance E[X ] does not exist if X has a Cauchy distribution.

b) False, even for discrete laws: take e.g. X a Bernoulli(1/2) r.v. and Y := 1−X .

c) False: same counterexample as in 1.b).

d) False: consider X and Y having distinct continuous distributions. (X has a continuous
distribution means that P(X = t ) = 0 for all t ∈R...)

e) True, because then 1 =P(X ∈ A) =P(Y ∈ A) for A := [0,∞) ∈B(R).

f) False1: take e.g. X uniformly distributed on {0,1,2}, and Y := X + 1 mod 3. Then P(X <
Y ) =P(X 6= 2) = 2/3 6= 1/3 =P(X = 2) =P(X > Y ). One other example involving continuous
distributions could be Y := 2min(X , X ′) with X , X ′ independent standard exponential r.v.:
then X ∼ Y (exercise), but

P(X < Y ) =P(2X ′ > X )
⊥⊥=
ˆ ∞

0
P(X ′ > x/2)e−x dx =

ˆ ∞

0
e−3x/2 dx = 2

3
,

whereas P(X > Y ) = 1−P(X < Y ) = 1/3.

g) True, since in that case E[|Y |] = ´
R
|t |PY (dt ) = ´

R
|t |PX (dt ) = E[|X |] <∞, and the same then

holds without absolute values. Recall more generally that X ∼ Y =⇒ E[g (X )] = E[g (Y )]
for g measurable > 0 or continuous bounded.

h) False: take e.g. X ,Y as in 1.b) and Z :=−X .

2. a) False: take e.g. X := N and Y := N 2, where N is a centered Gaussian r.v.

b) False: take e.g. two independent Bernoulli r.v.

c) False when X = Y = c for a fixed c ∈ R. (Conversely, if X ,Y are independent with P(X =
Y ) = 1, then X = Y = c almost surely, for some c ∈R.)

d) False: take e.g. X ,Y i.i.d. with P(X =−1) =P(X = 1) = 1/2, and Z := X Y .

e) True: let F,G : R → [0,∞) measurable. As F̃ = F ◦ f and G̃ := G ◦ g are also measurable
nonnegative functions, we have

E[F ( f (X ))G(g (Y ))] = E[F̃ (X )G̃(Y )]

= E[F̃ (X )]E[G̃(Y )] (as X ⊥⊥ Y )

= E[F ( f (X ))]E[G(g (Y ))].

Since the equality holds for any pair (F,G), we conclude that f (X ) ⊥⊥ g (Y ). ■

1A fortiori, X ∼ Y 6=⇒ (X ,Y ) ∼ (Y , X ) in general. But the statements become true if X and Y are further independent,
as then P(X ,Y )(du,dv) = PX (du)PY (dv) = PY (du)PX (dv) = P(Y ,X )(du,dv).

40

http://benjamin.dadoun.free.fr/afewexerciseswithsolutions.pdf?c
mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


B. Dadoun 2.3. COMPUTING DISTRIBUTIONS

2.3 Computing distributions

Exercise 2.3.1. Let p ∈ (0,1) and X1, X2, . . . ,Y1,Y2, . . . be i.i.d. Bernoulli(p) r.v. We define

N := min{n ∈N : Xn 6= Yn}

and set “Z := XN ”, i.e Z =
∞∑

n=1
1{N=n}Xn .

1. Check that N > 1 has the geometric distribution with parameter 2p(1−p).

2. Show that Z has the Bernoulli(1/2) distribution.

3. Deduce a way to simulate a fair coin toss using a potentially unfair coin.

Solution of Exercise 2.3.1.

1. Let n > 1. We have N = n if and only if

X1 = Y1, X2 = Y2, . . . , Xn−1 = Yn−1 and Xn 6= Yn .

Moreover, P(X1 = Y1) = P(X1 = Y1 = 1)+P(X1 = Y1 = 0) = p2 + (1−p)2. Since X1, X2, . . . ,Y1,Y2, . . .
are i.i.d. we deduce that

P(N = n) = qn−1 ·2p(1−p),

where q := p2 + (1−p)2 = 1−2p(1−p). Thus N has the geometric distribution with parameter
2p(1−p).

2. It is clear by definition that Z ∈ {0,1}, so Z is a Bernoulli r.v. Its parameter p is

E[Z ] =
∞∑

n=1
E
[
1{N=n}Xn

]= ∞∑
n=1

P(N = n, Xn = 1)

(the first equality resulting from monotone convergence). But N = n and Xn = 1 if and only if
X1 = Y1, X2 = Y2, . . . , Xn−1 = Yn−1 and Xn = 1, Yn = 0. Therefore P(N = n, Xn = 1) = qn−1 ·p(1−
p) = 1

2 P(N = n), and p = E[Z ] = 1/2.

3. We toss the coin twice and repeat this step until two different faces (HT or TH) have been ob-
tained. According to what precedes, the result of the last performed toss is a simulation of
a fair coin toss. The average number of tosses (that is, the complexity of the simulation) is
2E[N ] = 1/(p(1−p)). ■

Exercise 2.3.2. Let X be uniformly distributed on [−1,1]. Find the density of Y := X k for positive
integers k.

Solution of Exercise 2.3.2. The c.d.f. of X is P(X 6 t ) = (t +1)/2, t ∈ [−1,1]. If k is odd, then P(Y 6 t ) =
( k
p

t +1)/2, t ∈ [−1,1], else P(Y 6 t ) = P(X ∈ [− k
p

t , k
p

t ]) = k
p

t , t ∈ [0,1]. (These distribution functions
are obviously both continuous and piecewise of C 1 class.) Hence fY (y) = 1{0<|y |<1} k

p
y1−k /2k for k

odd, and fY (y) =1{0<y<1} k
p

y1−k /k for k even. ■
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Exercise 2.3.3. Let X have distribution function F . What is the distribution function of Y := |X |?
When X admits a continuous density fX , show that Y also admits a density fY , and express fY in
terms of fX .

Solution of Exercise 2.3.3. We have P(Y 6 t ) = F (t )−F (−t−), t > 0. If fX exists and is continuous,
then F is C 1 with F ′ = fX . Therefore fY exists, and fY (y) =1[0,∞)(y)( fX (y)+ fX (−y)). ■

Exercise 2.3.4. LetΘ be uniformly distributed on the interval (−π
2 , π2 ).

1. Find a continuous density function for C := tanΘ.

2. Find a density function for A := (sinΘ)2 which is continuous on (0,1).

3. Identify the law of C 2 − AC 2 + A.

Solution of Exercise 2.3.4.

1. We have P(C 6 t ) =P(Θ6 arctan t ) = (arctan t +π/2)/π, t ∈R, so a continuous density is fC (x) =
1/

(
π(1+x2)

)
(Cauchy(0,1) law).

2. Clearly A ∈ [0,1] and P(A 6 t ) = P(|Θ| 6 arcsin
p

t ) = (2arcsin
p

t )/π, t ∈ [0,1], thus a density
f A(y)=1(0,1)(y)/

(
π
√

y(1− y)
)

continuous on (0,1) (Arcsine(0,1) law).

3. By basic trigonomometry C 2 − AC 2 + A = 2A, and this has density 1(0,2)(y) f A(y/2)/2. ■

Exercise 2.3.5. Let X be Cauchy with parameters α,1. Let Y := a/X with a 6= 0. Show that Y is also
a Cauchy r.v. and find its parameters.

Solution of Exercise 2.3.5. Since y ← a/x is a C 1-diffeomorphism of U :=R\ {0} with Leb(R\U ) = 0,

E[ f (Y )] =
ˆ

U

f (a/x)dx

π(1+ (x −α)2)
=
ˆ

U

f (y) |a|dy

π(y2 + (a − yα)2)
=
ˆ
R

f (y) |a|
1+α2 dy

π

[(
y − aα

1+α2

)2 +
( |a|

1+α2

)2
]

for every f bounded. Thus Y is Cauchy with parameters aα/(1+α2), |a|/(1+α2). ■

Exercise 2.3.6. Let X ,Y be two independent N (0,1) random variables. Find a density function for
Z := X 2/(X 2 +Y 2) which is continuous on (0,1).

Solution of Exercise 2.3.6. Let g : R→ R be continuous and bounded. We apply two changes of vari-
ables — one using the C 1-diffeomorphismϕ : (r,θ) 7→ (x, y) = (r cosθ,r sinθ) from (0,∞)×(−π,π) onto
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P =R2 \ (−∞,0]× {0}, with Jacobian determinant |Jϕ(r,θ)| = r , and one using the C 1-map θ 7→ cos2θ:

E[g (Z )] = 1

2π

Ï
P

g

(
x2

x2 + y2

)
e− x2+y2

2 dxdy (P((X ,Y ) ∉ P ) = 0)

= 1

2π

Ï
(0,∞)×(−π,π)

g
(
cos2θ

)
r e− r 2

2 dr dθ

= 1

2π

ˆ
(−π,π)

g
(
cos2θ

)
dθ (Fubini–Lebesgue)

= 2

π

ˆ
(0,π2 )

g
(
cos2θ

)
dθ (symmetry)

= 1

π

ˆ 1

0
g (z)

1p
z(1− z)

dz.

We conclude that Z has density z 7→ (
π
p

z(1− z)
)−1 on (0,1) (Arcsine(0,1) law). ■

Exercise 2.3.7. Let X be positive with a density f . Find a density for Y := 1/(X +1).

Solution of Exercise 2.3.7. Since P(Y 6 t ) = P(X >−1+ 1/t ) = ´∞−1+1/t f (x)dx = ´ t
0 f (−1+ 1/y)/y2 dy

[x ←−1+1/y] for t ∈ (0,1), the map y 7→1(0,1)(y) f (−1+1/y)/y2 is a density for Y . ■

Exercise 2.3.8. Let X , X1, X2, . . . be i.i.d. real r.v. with cumulative distribution function F and having
a density function f . We set

N := inf{k ∈N : Xk > X }.

1. Let k ∈N and t ∈R. Show that

P(N = k, X 6 t ) =
ˆ t

−∞
F (x)k−1(1−F (x)

)
f (x)dx.

2. Conclude that

P(N = k) = 1

k
− 1

k +1
, k ∈N.

Solution of Exercise 2.3.8.

1. This follows easily from the fact that X , X1, . . . , Xk are i.i.d.:

P(N = k, X 6 t ) =P(X 6 t , X1 6 X , . . . , Xk−1 6 X , Xk > X )

=
ˆ

dF (x)1{x6t }

˙
dF (x1) · · ·dF (xk )1{x16x} · · ·1{xk−16x}1{xk>x}

=
ˆ t

−∞
f (x)dx

(
1−F (x)

)
F (x)k−1.

2. Observing that (F k )′ = kF k−1 f for all k ∈N, we deduce that

P(N = k, X 6 t ) = 1

k
F k (t )− 1

k +1
F k+1(t ).

As t →∞, the left-hand-side tends to P(N = k) while the right-hand side tends to 1
k − 1

k+1 (be-
cause F (t ) → 1). Hence the result. ■
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Exercise 2.3.9. Let X be a real random variable such that:

FX (t ) :=P(X 6 t ) =



0, if t <−3,

1/3, if −36 t <−2,

7/12, if −26 t < 0,

3/4, if 06 t < 4,

1, if 46 t .

Compute E[X ] and Var(X ).

Solution of Exercise 2.3.9. Clearly X ∈ {−3,−2,0,4}. Using that P(X = t ) = FX (t )−FX (t−) we find
P(X =−3) = 1/3, P(X =−2) = 1/4, P(X = 0) = 1/6, and P(X = 4) = 1/4. Therefore

E[X ] = (−3) ·1/3+ (−2) ·1/4+0 ·1/6+4 ·1/4 =−1/2,

E[X 2] = 9 ·1/3+4 ·1/4+16 ·1/4 = 8,

and

Var(X ) = E[X 2]−E[X ]2 = 8−1/4 = 31/4. ■

Exercise 2.3.10. Let X , X1, X2, . . . be i.i.d. real r.v. with distribution function F and having a density
function f . We set

N := inf{k ∈N : Xk > X }.

1. Let k ∈N and t ∈R. Show that

P(N = k, X 6 t ) =
ˆ t

−∞
F (x)k−1(1−F (x)) f (x)dx.

2. Conclude that

P(N = k) = 1

k
− 1

k +1
, k ∈N.

Solution of Exercise 2.3.10.

1. By definition of N and independence of (X , X1, . . . , Xk ),

P(N = k, X 6 t ) =P(X1, . . . , Xk−1 6 X , Xk > X , X 6 t )

=
ˆ t

−∞
P(X1, . . . , Xk−1 6 x, Xk > x) f (x)dx

=
ˆ t

−∞
F (x)k−1(1−F (x)) f (x)dx.
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2. Note that for each k ∈N, the function x 7→ F (x)k−1 f (x) is integrable on Rwith
ˆ ∞

−∞
F (x)k−1 f (x)dx =

ˆ ∞

−∞
F (x)k−1F ′(x)dx =

[
F (x)k

k

]x→∞

x→−∞
= 1

k
,

where we used that F ′ = f a.e. We then deduce from monotonicity and Question 1 that

P(N = k) = lim↑
t→∞

P(N = k, X 6 t )

=
ˆ ∞

−∞
F (x)k−1 f (x)dx −

ˆ ∞

−∞
F (x)k f (x)dx

= 1

k
− 1

k +1
. ■

Exercise 2.3.11. Let U ,V be two independent standard uniform r.v. We set

X :=U 2 +V 2, and Y :=U 2/X .

Compute

P(Y 6 t | X 6 1) := P(Y 6 t , X 6 1)

P(X 6 1)
, t ∈R.

Solution of Exercise 2.3.11. By independence, (U ,V ) has density function 1(0,1)2 , so

P(X 6 1) =
Ï

(0,1)2
1{u2+v261} dudv =π/4.

(1
4 · (area of the unit circle)

)
Similarly, for 06 t 6 1,

P(Y 6 t , X 6 1) =
Ï

(0,∞)2
1{u26t (u2+v2)}1{u2+v261} dudv

=
Ï

(0,∞)×(0,π/2)
1{sin2 θ6t }1{r 261} r dr dθ (polar coordinates)

=
(ˆ 1

0
r dr

)(ˆ π/2

0
1{|sinθ|6p

t } dθ

)
(Fubini)

= 1

2
arcsin

p
t .

We conclude that P(Y 6 t | X 6 1) = (2/π)arcsin
p

t for 06 t 6 1. (We say that conditionally on X 6 1,
the random variable Y has the Arcsine distribution.) ■

Exercise 2.3.12. Let X be a real r.v. in L1(Ω,A ,P).

1. Let a,b be two real numbers. Show that

E[|X −b|]−E[|X −a|] =
ˆ b

a

[
P(X 6 t )−P(X > t )

]
dt .

Hint. Observe that |b −x|− |x −a| =
ˆ b

a

(
1{x6t } −1{x>t }

)
dt . Use Fubini’s theorem.
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2. We call m ∈R a median of a real r.v. Y if P(Y 6m)> 1/2 and P(Y >m)> 1/2.

a) Show that every real random variable admits a median. Is there uniqueness?

b) Let m be a median of X . Deduce from Question 1 that

E[|X −m|] = inf
c∈R

E[|X − c|].

Conclude that |E[X ]−m|6σ where σ2 := Var(X ).

Solution of Exercise 2.3.12.

1. We may suppose a < b. The observation is immediate. From the right-hand side,

ˆ b

a

[
P(X 6 t )−P(X > t )

]
dt =
ˆ b

a

(ˆ
Ω

[
1{X (ω)6t } −1{X (ω)>t }

]︸ ︷︷ ︸
=: f (ω,t )

P(dω)
)

dt

where f ∈ L1(Ω× (a,b),A ⊗B((a,b)),P⊗dt ) — indeed,

ˆ b

a

(ˆ
Ω

| f (ω, t )|P(dω)

)
dt 6

ˆ b

a

[
P(X 6 t )+P(X > t )

]
dt 6 2(b −a) <∞.

Fubini’s theorem then entails

ˆ b

a

[
P(X 6 t )−P(X > t )

]
dt =
ˆ
Ω

(ˆ b

a
f (ω, t )dt

)
P(dω)

= E[|b −X |− |X −a|]
= E[|X −b|]−E[|X −a|],

where we used the stated observation for the second equality.

2. a) Recall that FX (t ) :=P(X 6 t ) → 0 as t →−∞ and FX (t ) → 1 as t →∞, thus m := F−1
X (1/2):=

inf{t ∈ R : FX (t ) > 1/2} is a well-defined real number. For mn ↓ m such that FX (mn) > 1/2
for every n, we have, by right-continuity of FX ,

P(X 6m) = FX (m) = lim↓
n→∞

FX (mn)> 1/2

Now FX (m −1/n)6 1/2 by definition of m, and by monotonicity

P(X >m) = lim↓
n→∞

P(X > m −1/n) = 1− lim
n→∞FX (m −1/n)> 1/2,

so m is a median of X . There is no uniqueness in general. For instance if X is a Bernoulli(1/2)
random variable, that isP(X = 0) =P(X = 1) = 1/2, then any real m ∈ (0,1) is a median of X .
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b) For c > m we have, using the result of Question 1,

E[|X − c|]−E[|X −m|] =
ˆ c

m

[
P(X 6 t )−P(X > t )

]
dt

>
ˆ c

m

[
P(X 6m)−P(X > m)

]
dt

=
ˆ c

m

[
2P(X 6m)−1

]
dt

> 0.

Likewise, for c < m,

E[|X − c|]−E[|X −m|] =
ˆ m

c

[
P(X > t )−P(X 6 t )

]
dt

>
ˆ m

c

[
P(X >m)−P(X < m)

]
dt

=
ˆ m

c

[
2P(X >m)−1

]
dt

> 0.

Hence E[|X −m|] = infc∈RE[|X − c|]. In particular, for c := E[X ],

|E[X ]−m|6 E[|X −m|]6 E[|X − c|]6
√
E[|X − c|2] =σ,

where the last inequality stems from Cauchy–Schwarz (or Hölder). ■

Exercise 2.3.13. For any distribution function F , we define

F−1(u) := inf{t ∈R : F (t ) > u}, u ∈ (0,1),

the right-continuous inverse of F .

1. Compute F−1 when F is the standard exponential distribution.

2. Show that for every t ∈R and u ∈ (0,1), u < F (t ) =⇒ F−1(u)6 t =⇒ u 6 F (t ).

3. Let U be uniformly distributed on (0,1).

a) Show that blog1/2Uc has the Geometric(1/2) distribution (with b·c = integer part).

b) More generally, show that F−1(U ) has law F .

4. Show that F−1 is non-decreasing.

5. Show that F−1 is right-continuous.

Consequently, the set (0,1) \C (F−1) of discontinuity points of F−1 is at most countable.
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6. Let F,F1,F2, . . . be distribution functions such that ∀t ∈ C (F ), Fn(t ) → F (t ). Show that ∀u ∈
C (F−1), F−1

n (u) → F−1(u).

7. Consider a convergence in distribution Xn =⇒ X of real r.v., and let U be a standard uniform r.v.
Show that there exist Y and Yn , n ∈N, measurable w.r.t. U such that Y ∼ X , Yn ∼ Xn , and Yn → Y
a.s.

Solution of Exercise 2.3.13.

1. Here u < F (t ) happens for t > 0 such that 1− e−t > u, i.e, t ∈ (− log(1−u),∞). Hence F−1(u) =
− log(1−u) for every u ∈ (0,1).

2. The first implication is obvious. For the second one, if F−1(u) 6 t , then for every n ∈N we can
find tn < t+ 1

n such that u < F (tn)6 F (t+ 1
n ) (F is non-decreasing). Taking n →∞ gives u 6 F (t ),

by right-continuity of F .

Remark. If F is one-to-one from F−1〈(0,1)〉 into an interval, then F−1 coincides with the inverse
function of F .

3. a) If k ∈ N0, then blog1/2 yc = k ⇐⇒ k 6 log1/2 y < k + 1 ⇐⇒ 2−k−1 < y 6 2−k for ev-
ery y ∈ (0,1), so P(blog1/2 Y c = k) = 2−k − 2−k−1 = 2−k−1, k ∈ N0, and this is indeed the
Geometric(1/2) distribution.

b) By Question 2, and because U has the standard uniform distribution,

F (t ) =P(
U < F (t )

)
6P

(
F−1(U )6 t

)
6P

(
U 6 F (t )

)= F (t ), t ∈R.

As F is thus the distribution function of both X and F−1(U ), these two r.v. are equally dis-
tributed. For instance − log(1−U ) (or simply − logU , since 1−U is also uniformly dis-
tributed on (0,1)) has the standard exponential distribution.

4. If u′ > u, then {t ∈R : F (t ) > u′} ⊆ {t ∈R : F (t ) > u}, and so F−1(u′)> F−1(u).

5. Let uk ↓ u in (0,1). There exist tr ↓ F−1(u) such that F (tr ) > u for all r . For r fixed, we have
F (tr ) > uk for k large enough, so F−1(uk ) 6 tr , and thus limsupF−1(uk ) 6 tr . By letting r →∞,
we get limsupF−1(uk ) 6 F−1(u). According to Question 1 we also have F−1(uk ) > F−1(u) for
all k, and therefore liminfF−1(uk )> F−1(u). Finally

lim
k→∞

F−1(uk ) = F−1(u)

for every sequence uk ↓ u, which proves that F−1 is right-continuous.

6. Let u ∈ C (F−1). There exist tr ↓ F−1(u) in C (F ) such that F (tr ) > u for every r . For r fixed,
Fn(tr ) → F (tr ) so Fn(tr ) > u and then F−1

n (u) 6 tr for n large enough, thus limsupF−1
n (u) 6

tr . By letting r → ∞, we get limsupF−1
n (u) 6 F−1(u). Now for each u′ < u, there exist tr ↑

F−1(u′) in C (F ), so F (tr ) 6 u′ < u. Hence Fn(tr ) 6 u and then F−1
n (u) > tr for n large enough,

so liminfF−1
n (u)> tr . By letting r →∞, we get liminfF−1

n (u)> F−1(u′). Taking now u′ → u gives
liminfF−1

n (u)> F−1(u) because u ∈C (F−1).
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7. Let F and Fn , n ∈ N, denote the distribution functions of X and Xn respectively. We know that
Y := F−1(U ) ∼ X and Yn := F−1

n (U ) ∼ Xn . Since Xn =⇒ X , we have Fn(t ) → F (t ) for all t ∈ C (F ).
Now (0,1) \C (F−1) is at most countable so U ∈C (F−1) a.s. It then follows from Question 3 that
Yn → Y almost surely.

Remark. This is a version of Skorokhod’s theorem in R. ■

Exercise 2.3.14. Recall that a r.v. X has a continuous distribution if x 7→P(X 6 x) is continuous.

1. Show that X has a continuous distribution if and only if P(X = x) = 0 for all x ∈R.

2. Show that if X has a continuous distribution and Y is any random variable independent of X ,
then X +Y has a continuous distribution.

3. Let f : R→ [0,∞) measurable. We suppose that (the distribution of) X has density f , that is

P(X ∈ A) =
ˆ

A
f (x)dx

for every Borel set A. Show that:

a) f is integrable on R.

b) If P(X ∈ A) > 0, then A has positive Lebesgue measure.

c) X has a continuous distribution.

d) If X has another density g , then f = g almost everywhere.

Solution of Exercise 2.3.14.

1. By monotonicity of the measure:

P(X = x) =P
( ⋂

n>1

(
x − 1

n , x
])= lim

n→∞
(
P(X 6 x)−P(X 6 x − 1

n )
)
,

which equals 0 for all x if and only if x 7→P(X 6 x) is continuous.

2. By independence,

P(X +Y = x) =
ˆ
P(X = x − y)︸ ︷︷ ︸

=0

P(Y ∈ dy) = 0

for all x ∈R. We conclude with Question 1.

3. a) For A =Rwe have

1 =
ˆ
R

f (x)dx,

so f is integrable on R.

b) If A has zero Lebesgue measure, then

P(X ∈ A) =
ˆ

A
f (x)dx = 0.
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c) In particular P(X = x) = 0 (since {x} has zero Lebesgue measure) for all x ∈R.

d) Let g be another density. Since A := { f < g } is a Borel set we have

P(X ∈ A) =
ˆ

A
f (x)dx 6

ˆ
A

g (x)dx =P(X ∈ A),

so A must have zero Lebesgue measure (otherwise the inequality would be strict). Simi-
larly, A′ := { f > g } has also zero Lebesgue measure. Hence f = g a.e. ■

Exercise 2.3.15. Let L be the uniform distribution on E := (0,1), and P be the Arcsine distribution:

P((0, t ]) =: F (t ) = 1

2
+ arcsin(2t −1)

π
, t ∈ E .

Define X (s, t ) := t1{s6t } + (1− t )1{s>t } for s, t ∈ E and writeQ for the law of X under L⊗P.

1. Show that for every bounded, measurable function f : E →R,ˆ
E

f (t )Q(dt ) =
ˆ

E
2t f (t )P(dt ).

Deduce thatQ admits w.r.t. P the Radon-Nikodym derivative

dQ

dP
= 2t , t ∈ E .

2. Conclude that X has density

t 7→ 2t

π
p

t (1− t )
, t ∈ E .

Solution of Exercise 2.3.15.

1. Observe first that

P((1− t ,1]) = 1−P((0,1− t ]) = 1

2
− arcsin

(
2(1− t )−1

)
π

=P((0, t ]), t ∈ E .

Since f is bounded, we can apply Fubini’s theorem and getˆ
E

f (t )Q(dt ) =
ˆ

E×E
f
(
X (s, t )

)
L⊗P(ds,dt )

=
ˆ

E
f (t )L((0, t ])P(dt )+

ˆ
E

f (1− t )L((1− t ,1])P(dt )

=
ˆ

E
2t f (t )P(dt )

(the last equality following from the change of variable t ← 1− t in the second integral). As this
holds for every bounded measurable function f , we deduce thatQ(dt ) = 2t P(dt ).

2. Since F is of class C 1 on E , P has a density. Then X has density

dQ

dt
= dQ

dP
· dP

dt
= 2t ·F ′(t ) = 2t

π
p

t (1− t )
, t ∈ E .

■
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2.4 Convergence of random variables, limit theorems

Exercise 2.4.1. Let L0 denote the space of real r.v. defined on (Ω,P).

1. Show that
d(X ,Y ) := E[1∧|X −Y |]

is a distance on L0 such that

Xn
P−−−−→

n→∞ X ⇐⇒ d(Xn , X ) −−−−→
n→∞ 0.

2. Let (Xn,k : n,k > 1) be elements in L0, and K : Ω→N be an independent r.v. We suppose that for
each k ∈N,

Xn,k
P−−−−→

n→∞ 0.

Show that

K∑
k=1

Xn,k
P−−−−→

n→∞ 0.

Solution of Exercise 2.4.1.

1. It is clear that d : E ×E → [0,∞) is symmetric and satisfies the triangle inequality. Further, if
d(X ,Y ) = 0 then 1∧|X −Y | = 0 a.s., so X = Y a.s. Now for ε> 0,

P(|Xn −X | > ε)6P(1∧|Xn −X | > 1∧ε)6 (1∧ε)−1d(Xn , X )

(by Markov’s inequality), and

d(Xn , X )6 (1∧ε)+P(|Xn −X | > ε),

which readily implies that d(Xn , X ) → 0 if and only if P(|Xn −X | > ε) → 0 for all ε> 0. Hence the
assertion.

2. Let µ denote the law of K . By independence

d

(
K∑

k=1
Xn,k ,0

)
=
ˆ

d

(
k∑

i=1
Xn,i ,0

)
µ(dk),

where the integrand is bounded by 1, and tends to 0 for each k (because any partial sum of
Xn,k , k ∈N, converges to 0 in probability). We conclude by dominated convergence. ■

Exercise 2.4.2. We have seen in Exercise 2.4.1 that the convergence in probability in the space
L0(Ω,A ,P) of real r.v. is metrized by

d(X ,Y ) := E[1∧|X −Y |].

51

mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


A few exercises B. Dadoun

0. Let (Xn)n∈N be a Cauchy sequence in L0(Ω,A ,P):

∀ε> 0, ∃k ∈N, ∀m > k, d(Xm , Xk ) 6 ε.

a) Construct an increasing sequence (kn)n>0 of positive integers such that

P

(∣∣Xkn+1 −Xkn

∣∣> 1

2n

)
6

1

2n
.

b) Show that almost surely, there exists N > 0 sufficiently large such that

∀n > N ,
∣∣Xkn+1 −Xkn

∣∣6 1

2n
.

Deduce that the sequence (Xkn )n>0 converges almost surely.

1. Prove that the space L0(Ω,A ,P) is complete.

2. Prove that the space Lp (Ω,A ,P), p > 1, is complete.

Solution of Exercise 2.4.2.

0. a) Let n > 0. Taking ε := 4−(n+1), there exists k ′
n ∈N such that (by Markov’s inequality)

∀m > k ′
n , P

(∣∣Xm −Xk ′
n

∣∣> 1

2n+1

)
6 2n+1 d(Xm , Xk ′

n
)6

1

2n+1
.

Let k0 := k ′
0 and, by induction, kn := k ′

n +kn−1 for n > 1. Then (kn)n>0 is increasing and for
all m > kn (in particular, for m = kn+1),

P

(∣∣Xm −Xkn

∣∣> 1

2n

)
6 P

({∣∣Xm −Xk ′
n

∣∣> 1

2n+1

}⋃{∣∣Xkn −Xk ′
n

∣∣> 1

2n+1

})
6

1

2n+1
+ 1

2n+1

= 1

2n
.

b) Since the series
∑

n 2−n converges, it follows from the first Borel–Cantelli lemma that al-
most surely, there exists N > 0 such that

∀n > N ,
∣∣Xkn+1 −Xkn

∣∣6 1

2n
.

Thus, almost surely, the series
∑

n (Xkn+1 − Xkn ) converges absolutely. Because R is com-
plete, this implies that the sequence (Xkn )n>0 converges almost surely.

1. By Question 0, if (Xn)n∈N is a Cauchy sequence in L0(Ω,A ,P), then one can extract a subse-
quence (Xkn )n>0 converging almost surely, and a fortiori in probability. Thus (Xn)n∈N is conver-
gent for the metric d . Hence the completeness of L0(Ω,A ,P).
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2. Let (Xn)n∈N be a Cauchy sequence in Lp (Ω,A ,P), p > 1. By Hölder’s inequality

d(Xm , Xk ) = E[1∧|Xm −Xk |]6 ‖Xm −Xk‖Lp (Ω,A ,P), m,k ∈N,

which means that (Xn)n∈N is also a Cauchy sequence in L0(Ω,A ,P). By Question 0, we can
extract a subsequence (Xkn )n>0 converging almost surely to some r.v. X . Now, for all ε> 0, since

‖Xkn −Xk‖p
Lp (Ω,A ,P) 6 ε,

when n and k are sufficiently large, we see by Fatou’s lemma that ‖X −Xk‖p
Lp (Ω,A ,P) 6 ε for all k

large enough. This means that (Xn)n∈N converges to X in Lp (Ω,A ,P). ■

Exercise 2.4.3. For each p ∈ (0,1), let B (p)
k ,k ∈N, be i.i.d. Bernoulli(p) r.v. We set

X (p) := lim
n→∞X (p)

n , where X (p)
n :=

n∑
k=1

B (p)
k 2−k ,

and

A(p) :=
{ ∞∑

k=1
bk 2−k

∣∣∣ bk ∈ {0,1}, and lim
k→∞

b1 +·· ·+bk

k
= p

}
⊂ (0,1).

1. Show that X (p) ∈ A(p) almost surely.

2. Show that for every k,n ∈ N0, P(k 6 2n X (p) < k + 1) 6 θn , with θ := max(p,1 − p). Deduce
that X (p) has a continuous distribution. We denote it µ(p).

3. In this question we consider p = 1/2.

a) Let U be a standard uniform r.v. Compute the characteristic functionΦU .

b) Show that for every t ∈R,

ΦXn (t ) = exp
(
i t/2− i 2−(n+1)t

) sin(t/2)

2n sin
(
2−(n+1)t

) ,

and deduce that µ(1/2) is the standard uniform distribution.

Hint. Use that (1+e iθ)sin(θ/2) = e iθ/2 sinθ to obtain a telescopic product.

4. We now consider p 6= 1/2.

a) Show that µ(p)(A(p)) = 1 and µ(1/2)(A(p)) = 0.

b) Deduce that µ(p) has no density function.

Solution of Exercise 2.4.3.

1. This follows from the law of large numbers, (B (p)
k )k∈N being i.i.d. with E[B (p)

1 ] = p.
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2. The integer part of 2n X (p) is 2n X (p)
n , whose probability mass function is clearly bounded by θn .

Now for each t ∈R, let for every n ∈N0, kn ∈N0 be the unique integer such that kn 6 2n t < kn+1.
Then

P(X (p) = t ) = lim
n→∞P(kn 6 2n X (p) < kn +1) 6 lim

n→∞θ
n = 0

(because θ < 1), hence X (p) has a continuous distribution.

3. a) For every t ∈R,

ΦU (t )
def= E

[
e i tU

]
=
ˆ 1

0
e i tu du = e i t −1

i t
= e i t/2 sin(t/2)

t/2
.

b) Knowing that B1, . . . ,Bn are i.i.d. Bernoulli(1/2),

ΦXn (t ) =
n∏

k=1
ΦBk

(
2−k t

)= n∏
k=1

1+exp
(
i 2−k t

)
2

.

Using the indication, this equals

2−n
n∏

k=1
exp

(
i 2−(k+1)t

) sin
(
2−k t

)
sin

(
2−(k+1)t

) = exp
(
i t/2− i 2−(n+1)t

) sin(t/2)

2n sin
(
2−(n+1)t

) .

Because sinh ∼ h as h → 0, we find

ΦXn (t ) −−−−→
n→∞ e i t/2 sin(t/2)

t/2
=ΦU (t ).

As Xn → X (a.s., and a fortiori in distribution), X has thus the standard uniform distribu-
tion. In other words, µ(1/2)(dx) =1[0,1](x)dx.

4. a) The sets A(p), p ∈ (0,1), are disjoint. Applying Question 1, we get for p 6= 1/2,

µ(p)(A(p)) =P(X (p) ∈ A(p)) = 1, and µ(1/2)(A(p))6P(X (1/2) ∉ A(1/2)) = 0.

b) Suppose that X (p) has a density f (x). Then from 3.b) and 4.a), we obtain

1 =µ(p)(A(p)) =
ˆ

A(p)
f (x)dx =

ˆ
A(p)

f (x)µ(1/2)(dx) = 0,

a contradiction. Thus µ(p), p 6= 1/2, is a continuous law without density. ■

Exercise 2.4.4. Let µ be a probability distribution on R having a second moment σ2 <∞ such that,
if X and Y are independent with law µ, then the law of (X +Y )/

p
2 is also µ. Show that µ=N (0,σ2).

Hint. Apply the central limit theorem to packs of 2n variables.
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Solution of Exercise 2.4.4. Let X ,Y , X1, X2, . . . be i.i.d. r.v. with lawµ. We first show thatµ has zero mean
(its first moment exists because σ2 <∞):

m := E[X ] = E

[
X +Yp

2

]
= 1p

2
(E[X ]+E[Y ]) =

p
2m, hence m = 0.

Let S0,k := Xk , k ∈N, and for every k,n ∈N, Sn,k := (Sn−1,2k−1+Sn−1,2k )/
p

2. By an immediate induction
over n, the Sn,k , k ∈N, are i.i.d. with law µ, and in particular we find that

Sn,1 =
p

2n

(
X1 +·· ·+X2n

2n
−2nm

)
−−−−→
n→∞ N (0,σ2), in distribution,

using the central limit theorem. We conclude that µ=N (0,σ2). ■

Exercise 2.4.5. Let Xn , n ∈N, be i.i.d. standard Poisson r.v., and Sn := X1 +·· ·+Xn .

Find the expression of P

(
Sn −np

n
6 0

)
, and deduce that lim

n→∞e−n
n∑

k=0

nk

k !
= 1

2
.

Solution of Exercise 2.4.5. We know from that E[X1] = Var(X1) = 1 (see e.g. Exercise 2.1.3), and it is a
simple exercise to show that Sn , n ∈N, is a Poisson(n) r.v. It thus follows from the central limit theorem
that

e−n
n∑

k=0

nk

k !
=P(Sn 6 n) =P

(
Sn −nE[X1]p

n
6 0

)
−−−−→
n→∞ P(N (0,1)6 0) = 1

2
.

■

Exercise 2.4.6. Let X1, X2, . . . be i.i.d. real r.v. with Var(X1) = 1, E[X1] = 0, and

Sn := X1 +·· ·+Xn , n ∈N.

1. Using the central limit theorem, show that there exist p > 0 and n0 ∈N such that

∀n > n0, P(|Sn |>
p

n)> p.

2. Deduce that lim
n→∞E[|Sn |] =∞.

Solution of Exercise 2.4.6.

1. If N is a N (0,1) random variable, then p :=P(N > 1) > 0 and the central limit theorem gives

P

(∣∣∣∣ Snp
n

∣∣∣∣> 1

)
−−−−→
n→∞ P(|N |> 1) = 2p.

Therefore it exists n0 ∈N such that P(|Sn |>
p

n)> p for all n > n0.

2. With such p > 0 and n0 ∈N, Markov’s inequality entails

∀n > n0, E[|Sn |]>
p

nP(|Sn |>
p

n)> p
p

n,

hence lim
n→∞E[|Sn |] =∞. ■
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Exercise 2.4.7. For each n ∈ N, let Xn be a N (µn ,σ2
n) r.v. (µn ∈ R, σ2

n > 0). We suppose that Xn

converges in distribution to some r.v. X .

1. Using characteristic functions, show that (σ2
n)n∈N converges to some σ2 > 0.

2. Let S(t ) :=P(X > t ), t ∈R.

a) Justify that S is continuous at some t0 > 0 large enough, with S(t0) < 1/4.

b) Deduce that (µn)n∈N is bounded from above (more precisely, limsup
n→∞

µn 6 t0).

c) Deduce that (µn)n∈N is bounded.

3. Conclude that X has a normal distribution.

Solution of Exercise 2.4.7.

1. In terms of characteristic functions, the convergence in distribution Xn → X translates into

∀t ∈R, ΦXn (t ) = exp
(
iµn t −σ2

n t 2/2
)−−−−→

n→∞ ΦX (t ).

Since ΦX is continuous at 0 and ΦX (0) = 1, there is t > 0 small enough such that ΦX (t ) 6= 0. Tak-
ing modulus above gives exp(−σ2

n t 2/2) →|ΦX (t )| > 0, soσ2
n converges toσ2 :=−2log |ΦX (t )|/t 2 >

0.

2. a) Clear, since S(t ) = 1−FX (t ) → 0 as t → ∞, and S has at most countably many points of
discontinuity.

b) Because t0 is a continuity point of S (i.e, of FX ),

P(Xn > t0) −−−−→
n→∞ S(t0) < 1/4.

If (µn)n∈N were not bounded from above, we could find n large enough such that µn > t0

and P(Xn > t0)6 S(t0)+1/4, resulting in the contradiction

1/2 =P(Xn >µn)6P(Xn > t0)6 S(t0)+1/4 < 1/2.

Therefore (µn)n∈N must be bounded from above.

c) Applying what precedes to the r.v. −Xn , n ∈ N, and −X , we get that (−µn)n∈N is bounded
from above. Hence (µn)n∈N is bounded.

3. It follows from the Bolzano–Weierstrass theorem that there exists a converging subsequence
µnk →µ ∈R, as k →∞. Then

∀t ∈R, ΦXnk
(t ) = exp

(
iµnk t −σ2

nk
t 2/2

)−−−−→
k→∞

exp
(
iµt −σ2t 2/2

)
,

which, because of the convergence in distribution of the subsequence Xnk → X , equals ΦX (t ).
We conclude that X is a N (µ,σ2) r.v. (Consequently, µn →µ.) ■

Exercise 2.4.8. We suppose that X , X1, X2, . . . are real r.v. such that Xn converges to X in distribution.
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1. Let f : R→R be a nonnegative continuous function. Show that

liminf
n→∞ E[ f (Xn)]> E[ f (X )].

Hint. Apply Fatou’s lemma/monotone convergence theorem to some ( fk (X ))k∈N.

2. Deduce that if (E[|Xn |])n∈N is bounded, then E[|X |] <∞.

3. Deduce that if Xn > 0 a.s. for every n ∈N, then X > 0 a.s.

Solution of Exercise 2.4.8.

1. For each k ∈N, the function fk : x 7→ min( f (x),k) is bounded and continuous. Since f > fk we
then have

liminf
n→∞ E[ f (Xn)]> lim

n→∞E[ fk (Xn)] = E[ fk (X )], for every k ∈N.

But ( fk (X ))k∈N is a sequence of nonnegative r.v. converging pointwise to f (X ) as k →∞, so

liminf
k→∞

E[ fk (X )]> E[ f (X )]

(actually E[ fk (X )] ↑ E[ f (X )], by monotone convergence). The conclusion follows.

2. Just apply Question 1 with the nonnegative continuous function f : x 7→ |x|.

3. We apply Question 1 with the nonnegative continuous function f : x 7→ max(−x,0). We obtain
E[max(−X ,0)] = 0, which means that max(−X ,0) = 0 almost surely, or equivalently, X > 0 a.s. ■

Exercise 2.4.9. Let X1, X2, . . . be i.i.d. centered, square-integrable r.v. Show that

liminf
n→∞ P(|X1 +·· ·+Xn |>

p
n) > 0.

Solution of Exercise 2.4.9. Let Sn := X1+·· ·+Xn andσ2 := Var(X1). If N is a N (0,σ2) random variable,
then p :=P(N > 1) > 0 and the central limit theorem gives

P

(∣∣∣∣ Snp
n

∣∣∣∣> 1

)
−−−−→
n→∞ P(|N |> 1) = 2p.

Therefore it exists n0 ∈N such that P(|Sn |>
p

n)> p for all n > n0. Hence the result.
Remark. In particular we deduce from Markov’s inequality that

liminf
n→∞

E[|X1 +·· ·+Xn |]p
n

> 0.
■
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Exercise 2.4.10. Let λ> 0, and for n >λ, Xn be a random variable having the binomial distribution
with parameter (n,λ/n), that is

P(Xn = k) =
(

n

k

)(
λ

n

)k (
1− λ

n

)n−k

, k = 0,1,2, . . . ,n.

Compute lim
n→∞P(Xn = k). What do you recognize?

Solution of Exercise 2.4.10. For k fixed we have, as n →∞,(
n

k

)
∼ nk

k !
, and

(
1− λ

n

)n−k

=
(
1− λ

n

)−k (
1− λ

n

)n

∼ e−λ.

Reporting these two equivalents in P(Xn = k) and simplifying, we get e−λ λk

k ! at the limit. We recognize
here the Poisson distribution with parameter λ (see Exercise 2.1.8). (We say that Xn converges in
distribution to a Poisson random variable.) ■

Exercise 2.4.11. Let f : [0,1] → R be a continuous function, x ∈ [0,1] and Xn := Xn(x) be a ran-
dom variable having the binomial distribution with parameter (n, x); see Exercise 2.1.4. We define
Yn := f (Xn/n), so that Yn is a discrete random variable taking values in the set Y := { f (k/n) : k =
0,1,2, . . . ,n}.

1. Let m ∈N. Recall why there exist C > 0 and δm > 0 such that

∀t ∈ [0,1], | f (t )|6C ,

and ∀(s, t ) ∈ [0,1]2 with |t − s|6 δm , | f (t )− f (s)|6 1

m
.

2. Check that for every δ> 0,

E[|Yn − f (x)|]6 2C P(|Xn −E[Xn]| > nδ)+E[| f (Xn/n)− f (x)|1{|Xn−nx|6nδ}],

then deduce that for every m ∈N,

E[|Yn − f (x)|]6 2C
x(1−x)

nδ2
m

+ 1

m
.

Hint. Recall E[Xn], Var(Xn) (see Exercise 2.1.4), and apply Chebyshev’s inequality.

3. We define Bn : x 7→ Bn(x) := E[Yn] = E[ f (Xn(x)/n)].

a) Check that Bn is a polynomial function in x ∈ [0,1].

b) Conclude that
sup

x∈[0,1]
|Bn(x)− f (x)| −−−−→

n→∞ 0.

Conclusion. Continuous functions defined on a compact interval can be (uniformly) approximated
by polynomials!
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Solution of Exercise 2.4.11.

1. Being continuous on the compact set [0,1], the function f is bounded — hence the existence
of such a C > 0, and (by Heine’s theorem) uniformly continuous — hence the existence of such
δm > 0, m ∈N.

2. We have

|Yn − f (x)| = | f (Xn/n)− f (x)|1{|Xn−nx|>nδ} +| f (Xn/n)− f (x)|1{|Xn−nx|6nδ},

where for C and δ := δm as in Question 1, the first term in the right-hand side is bounded by
2C 1{|Xn−nx|>nδm } and the second term is bounded by 1/m. Now, recall the moments of the bi-
nomial distribution in Exercise 2.1.4. On the one hand, we have E[Xn] = nx, so we deduce the
first inequality by taking expectations on both sides. On the other hand, Var(Xn) = nx(1−x), so
the second inequality then follows from Chebyshev’s inequality

P(|Xn −E[Xn]| > nδm)6
Var(Xn)

n2δ2
m

= x(1−x)

nδ2
m

.

3. Successively,

E[Yn]
def= ∑

y∈Y

yP(Yn = y)

= ∑
y∈Y

y
n∑

k=0
1{ f (k/n)=y}P(Xn = k)

=
n∑

k=0
f (k/n)P(Xn = k)

∑
y∈Y

1{ f (k/n)=y}︸ ︷︷ ︸
=1

=
n∑

k=0
f (k/n)

(
n

k

)
xk (1−x)n−k ,

which is a polynomial function in x ∈ [0,1].

4. Observe, by linearity of the expectation and the triangle inequality, that

|Bn(x)− f (x)| = |E[Yn − f (x)]|6 E[|Yn − f (x)|].
Therefore the result of Question 2 gives, for all n,m ∈N,

sup
x∈[0,1]

|Bn(x)− f (x)|6 C

2nδ2
m

+ 1

m
,

because x(1−x)6 1
4 for x ∈ [0,1]. We finally get

limsup
n→∞

sup
x∈[0,1]

|Bn(x)− f (x)|6 1

m
−−−−→
m→∞ 0,

hence what we wanted to show.
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Remark. This is a probabilistic proof of Weierstraß approximation theorem. ■

Exercise 2.4.12. Let (Xn)n∈N be a sequence of i.i.d. r.v. with E[|X1|] <∞, µ := E[X1], and

Sn := X1 +·· ·+Xn , n ∈N.

1. Show that if µ> 0 (resp. µ< 0), then Sn −→∞ (resp. −∞) almost surely.

2. We suppose here that P(X1 = 1) =P(X1 =−1) = 1/2.

a) Let m > 2k +1 in N. Show that Sn+m −Sn = m infinitely often, almost surely. Deduce that
limsup |Sn | > k almost surely.

b) Conclude that limsup |Sn | =∞ a.s.

Solution of Exercise 2.4.12.

1. This follows from the law of large numbers, since then Sn ∼ nµ as n →∞, a.s.

2. a) The probability ofΛp := {Spm+m −Spm = m} is that of

{Xpm+1 = 1, . . . , Xpm+m = 1},

which equals the constant 2−m because (Xn)n∈N is i.i.d. with P(X1 = 1) = 1/2. As (Λp )p∈N is
moreover an independent sequence of events, it follows from the second part of the Borel–
Cantelli lemma thatΛp occurs infinitely often, almost surely. But when Sn+m −Sn = m, we
must have either Sn+m > k or Sn <−k. Hence limsup |Sn | > k almost surely.

b) By Question 2,

P(limsup |Sn | =∞) = P

( ⋂
k∈N

{limsup |Sn | > k}

)
= 1.

(In fact, we can show that limsupSn =∞ and liminfSn =−∞, a.s.) ■

Exercise 2.4.13. Let (Xn)n∈N be a sequence of i.i.d. real r.v. with distribution function F such that
F (t )/t −→λ as t → 0+, for some λ> 0. Let Zn := n min(X1, . . . , Xn), n ∈N.

1. Check the following facts:

a) For every n ∈N, Zn > 0 almost surely.

b) For every t > 0, P(Zn > t ) −→ e−λt as n →∞.

c) For every ε> 0, there is nXn 6 ε infinitely often, almost surely.

2. Conclude that liminf Zn = 0 a.s., but that (Zn)n∈N does not converge a.s.

Solution of Exercise 2.4.13.
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1. a) Since F (t ) ∼λt as t → 0+, we have F (0) = 0 by right-continuity. Then

P(Zn 6 0) 6 P

(
n⋃

i=1
{nXi 6 0}

)
6 nF (0) = 0,

because X1, . . . , Xn are all distributed according to F . Thus Zn > 0 a.s.

b) Let t > 0. Using that the r.v. X1, . . . , Xn are mutually independent, and that log(1−F ( t
n )) =

−λ t
n +o( 1

n ) as n →∞, we have

P(Zn > t ) = P

(
X1 > t

n
, . . . , Xn > t

n

)
=

(
1−F

(
t

n

))n

−−−−→
n→∞ e−λt .

(This actually shows that (Zn)n∈N converges in law toward the exponential distribution
with rate λ.)

c) Let ε> 0. Because 1
n =O

(
F ( εn )

)
as n →∞, we have

∞∑
n=1

P(nXn 6 ε) =
∞∑

n=1
F

( ε
n

)
= ∞,

where the events {nXn 6 ε}, n ∈N, are independent. The result follows by the second part
of the Borel–Cantelli lemma.

2. By Question 1.c),

1 =P
( ⋂

k∈N

{
limsup

{
Zn 6

1

k

}})
6P

( ⋂
k∈N

{
liminf Zn 6

1

k

})
=P(liminf Zn 6 0),

and by 1.a), 1 = P(
⋂

n∈N{Zn > 0})6 P(liminf Zn > 0). Thus liminf Zn = 0 a.s., so if (Zn)n∈N were
converging a.s., then the limit would be 0. This is not possible because, by Question 1.b), Zn

does not even converge to 0 in probability. ■

Exercise 2.4.14. For each k ∈N, let (X (k)
n )n∈N be a sequence of real r.v. converging to 0 in probability,

as n →∞. Define, for k,n ∈N,

Y (k)
n :=

k∑
i=1

X (i )
n ,

and, for ε> 0 arbitrary, fn(k) :=P
(∣∣∣Y (k)

n

∣∣∣> ε).

1. Let k ∈N. Show that fn(k) −→ 0 (Y (k)
n converges to 0 in probability), as n →∞.

2. Let K be aN-valued r.v. independent of (X (k)
n ), and Y (K )

n (ω) := Y (K (ω))
n (ω),ω ∈Ω.

a) Show that P(|Y (K )
n | > ε) = E[ fn(K )].

b) Conclude that Y (K )
n converges to 0 in probability, as n →∞.
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Solution of Exercise 2.4.14.

1. By the triangle inequality, if |X (i )
n |6 ε/k for all i = 1, . . . ,k, then |Y (k)

n |6 ε. Therefore

fn(k) 6 P

(
k⋃

i=1

{∣∣∣X (i )
n

∣∣∣> ε

k

})
6

k∑
i=1
P
(∣∣∣X (i )

n

∣∣∣> ε

k

)
,

where each element in the latter sum tends to 0 as n → ∞, since the sequences (X (i )
n )n∈N, i =

1, . . . ,k, all converge to 0 in probability.

2. a) Writing the event of interest as the disjoint union{∣∣Y (K )
n

∣∣> ε}= ⊔
k∈N

{K = k}∩
{∣∣∣Y (k)

n

∣∣∣> ε},

we have, using the independence of K with (X (k)
n ),

P
(∣∣Y (K )

n

∣∣> ε)= ∑
k∈N

P(K = k)P
(∣∣∣Y (k)

n

∣∣∣> ε)︸ ︷︷ ︸
= fn (k)

= E[ fn(K )].

b) Let m ∈N. For every ω ∈Ω, applying Question 1 with k := K (ω) ∈N gives fn(K (ω)) −→ 0 as
n →∞. It is moreover clear that 0 6 fn 6 1 for every n ∈N. Question 2.a) and dominated
convergence theorem then imply

P
(∣∣Y (K )

n

∣∣> ε)= E[ fn(K )] −−−−→
n→∞ 0,

that is the convergence in probability of Y (K )
n toward 0, as n →∞. ■

Exercise 2.4.15. Let Xn , n > 1, be centered with variance σ2
n , such that σ2

n → 0 as n → ∞. Show
that Xn converges to 0 in L2(P) (and in probability).

Solution of Exercise 2.4.15. Xn is centered, so E[|Xn |2] = Var(Xn) =σ2
n → 0 as n →∞, i.e, Xn

L2(P)−−−−→
n→∞ 0. ■

Exercise 2.4.16. Let Xn , n > 1, be i.i.d. centered random variables with variance σ2 <∞. Show that
1
n

∑n
j=1 X j converges to 0 in L2(P) (and in probability).

Solution of Exercise 2.4.16. We have

E

[∣∣∣∣∣ 1

n

n∑
j=1

X j

∣∣∣∣∣
2]

= 1

n2
Var

(
n∑

j=1
X j

)
(X1, . . . , Xn centered)

= 1

n2

n∑
j=1

Var(X j ) (X1, . . . , Xn independent)

= 1

n2
·n ·σ2 (X1, . . . , Xn have same law)

−−−−→
n→∞ 0. ■
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Exercise 2.4.17. Let X j , j > 1, be i.i.d. with standard Laplace distribution (having common density
e−|x|/2). Show the convergence in distribution

p
n

∑n
j=1 X j∑n
j=1 X 2

j

D−−−−→
n→∞ Y ,

where Y is a N (0,1/2) Gaussian variable.
Hint. Use Slutsky’s lemma.

Solution of Exercise 2.4.17. We have E[X1] = 0, E[X 2
1 ] = 2. By the central limit theorem,

Un := 1p
n

n∑
j=1

X j
D−−−−→

n→∞ 2Y ,

with Y having the N (0,1/2) distribution, while by the strong law of large numbers,

Vn := 1

n

n∑
j=1

X 2
j

a.s.−−−−→
n→∞ 2

(and in probability). By Slutsky’s lemma, we conclude that

Un

Vn
=p

n

∑n
j=1 X j∑n
j=1 X 2

j

D−−−−→
n→∞ Y . ■

Exercise 2.4.18. Let X j , j > 1, be i.i.d. with mean 1 and varianceσ2 ∈ (0,∞). Define Sn :=∑n
j=1 X j , n ∈

N. Show the convergence in distribution

2

σ
(
√

Sn −p
n)

D−−−−→
n→∞ Y ,

where Y is a N (0,1) Gaussian variable.

Solution of Exercise 2.4.18. We observe that

2

σ
(
√

Sn −p
n) = 2

1+
√

Sn
n

· Sn −n

σ
p

n
.

By the strong law of large numbers, the first factor of the right-hand side tends a.s. to 1, while by the
central limit theorem, the second factor converges in distribution to Y , where Y has the standard
N (0,1) distribution. We conclude by Slutsky’s lemma. ■

Exercise 2.4.19. Let X j , j > 1, be i.i.d. with mean 0 and varianceσ2 ∈ (0,∞). Define Sn :=∑n
j=1 X j , n ∈

N. Show that Sn/σ
p

n does not converge in probability.

Solution of Exercise 2.4.19. Let N have the standard N (0,1) distribution. By the central limit theorem,

P
(∣∣Sn/σ

p
n

∣∣> 1
)−−−−→

n→∞ P(|N | > 1).

Since the right-hand side is > 0, the convergence in probability cannot hold. ■
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Exercise 2.4.20. Let X j , j > 1, be i.i.d. with mean 0 and variance σ2 <∞. Define Sn :=∑n
j=1 X j , n ∈

N. Show that

lim
n→∞E

[ |Sn |p
n

]
=

√
2

π
σ.

Solution of Exercise 2.4.20. Let Yn := Sn/
p

n. By the central limit theorem,

Yn
D−−−−→

n→∞ Y , (?)

where Y ∼N (0,σ2). Observe that E[|Y |] = 2E[Y ;Y > 0] =σp2/π. Thus we need to justify the conver-
gence of first moments

E[|Yn |] −−−−→
n→∞ E[|Y |]. (??)

This does not follow from just (?), because x 7→ |x| is of course continuous, but not bounded. How-
ever, for every k ∈ N, the map x 7→ |x| ∧ k is continuous and bounded. On the one hand, conver-
gence (?) gives

E[|Yn |]> E[|Yn |∧k] −−−−→
n→∞ E[|Y |∧k],

so that letting now k → ∞ yields liminfn→∞E[|Yn |] > E[|Y |] by monotone convergence (or Fatou’s
lemma). On the other hand,

E[|Yn |]6 E[|Yn |∧k]+E[|Yn |1{|Yn |>k}]

6 E[|Yn |∧k]+σ
√
P(|Yn | > k) (Cauchy–Schwarz)

−−−−→
n→∞ E[|Y |∧k]+σ

√
P(|Y | > k) (by (?))

−−−−→
k→∞

E[|Y |]. (Beppo Levi)

This shows that limsupn→∞E[|Yn |]6 E[|Y |], and (??) is now proved.

Additional exercise. Use the same technique to prove that if Xn
D→ X and (Xn)n∈N is bounded in Lq (P)

for some q > 1, then E[X p
n ] → E[X p ] for every 1 6 p < q . Find a counterexample where Xn

D→ X but
E[Xn] 6→ E[X ]. ■

Exercise 2.4.21. Let q > 1 and (Xn)n∈N be a sequence of real r.v. bounded in Lq (P):

C := sup
n∈N

E[|Xn |q ] <∞.

1. Suppose that Xn converges almost surely to some r.v. X as n →∞.

a) Is X in Lq (P)?

b) Suppose q > 1 and 16 p < q . Does E[|Xn |p ] converge to E[|X |p ] as n →∞?

2. Same questions if the convergence Xn → X holds in probability.

3. Same questions if the convergence Xn → X holds in distribution.
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Solution of Exercise 2.4.21.

1. a) Yes. Fatou’s lemma gives E[|X |q ]6 liminfE[|Xn |q ]6C <∞, so X ∈ Lq (P).

b) Yes. There is in fact convergence in Lp (P):

E[|Xn −X |p ] = E[|Xn −X |p1{|Xn−X |61}]+E[|Xn −X |p1{|Xn−X |>1}].

The first term tends to 0 by dominated convergence. For the second term, Hölder’s in-
equality gives (for p/q + (q −p)/q = 1)

E[|Xn −X |p1{|Xn−X |>1}]6 E[|Xn −X |q ]p/q P(|Xn −X | > 1)(q−p)/q

6 2pC p/q P(|Xn −X | > 1)(q−p)/q ,

which also tends to 0 as n →∞.

2. Because of the convergence in probability there is a subsequence (Xnk )k∈N which converges al-
most surely toward X (this is a consequence of Borel–Cantelli’s lemma). Applying 1.a) to this
subsequence yields X ∈ Lq (P). Further, for 1 6 p < q , we deduce from 1.b) that for every sub-
sequence of (Xn)n∈N, there is a subsubsequence converging to X in Lp (P). Hence (Xn)n∈N con-
verges to X in Lp (P).

3. a) Yes. For each k ∈N, the function x 7→ |x|q ∧k is bounded and continuous, so the conver-
gence in distribution Xn → X entails

E[|X |q ∧k] = lim
n→∞E[|Xn |q ∧k].

Now, by the monotone convergence theorem,

E[|X |q ] = lim
k→∞

E[|X |q ∧k] = liminf
k→∞

liminf
n→∞ E[|Xn |q ∧k]6 liminf

n→∞ E[|Xn |q ], (2.1)

where the right-hand side is bounded by C <∞.

b) Yes. As (2.1) also holds with p in place of q , it remains to show that

limsup
n→∞

E[|Xn |p ]6 E[|X |p ]. (2.2)

But
E[|Xn |p ]6 E[|Xn |p ∧kp ]+E[|Xn |p1{|Xn |>k}]

for k > 0 arbitrary. As x 7→ |x|p ∧kp is a continuous bounded function, the first term tends
to E[|X |p ∧kp ] as n → ∞ by the convergence in distribution Xn → X . Using Hölder’s in-
equality for the second term gives

limsup
n→∞

E[|Xn |p ]6 E[|X |p ∧kp ]+C p/q limsup
n→∞

P(|Xn | > k)(q−p)/q .

Now we may choose k > 0 arbitrary large such that k and −k are continuity points of FX , so
that P(|Xn | > k) converges to P(|X | > k) as n →∞. Then, using the monotone convergence
theorem and the fact that P(|X | > k) tends to 0 as k →∞, we get (2.2) as desired.
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Remark. Here is another solution to the exercise involving an argument of uniform integrability.
The convergence of (Xn)n∈N to X almost surely (or in probability) implies that of the sequence (|Xn −
X |p )n∈N (towards 0), which, by Minkowski’s inequality and Fatou’s lemma, is bounded in Lq/p (P) with
q/p > 1, and thus uniformly integrable; then, |Xn −X |p converges to 0 in L1(P) (i.e Xn converges to X
in Lp (P)), and in particular we have the convergence of E[|Xn |p ] towards E[|X |p ]. When the conver-

gence Xn → X holds only in distribution, we may apply the preceding for Yn
a.s.−−→ Y given by Sko-

rokhod’s representation theorem, with Yn distributed as Xn , n ∈N, and Y distributed as X (defined on
some other probability space): we can conclude because E[|Xn |p ] and E[|X |p ] are fully determined by
the respective distributions of Xn , n ∈N, and of X . ■

Exercise 2.4.22. Let X , X1, . . . be random variables and g : R→ [0,∞) measurable. We suppose that

Xn
(d)−−−−→

n→∞ X , and Θ := sup
n>1

E[g (Xn)] <∞.

Show that for every continuous function f : R→Rwith f = o(g ) at ±∞, we have

lim
n→∞E[ f (Xn)] = E[ f (X )] in R.

Solution of Exercise 2.4.22. Suppose first f > 0. Since f = o(g ) at ±∞, we have, for every ε > 0 fixed,
f (x)6 εg (x) whenever |x| > Kε with Kε sufficiently large. On the one hand, for all n > 1,

E[ f (Xn)]6Θ+E[ f (Xn)1{|Xn |6K1}]

6Θ+ sup
|x|6K1

f (x);

hence

E[ f (X )]6 liminf
k→∞

E[ f (X )∧k] (Fatou’s lemma)

= liminf
k→∞

liminf
n→∞ E[ f (Xn)∧k] (Xn

(d)−−−−→
n→∞ X )

6 liminf
n→∞ E[ f (Xn)]

<∞.

On the other hand, for all n > 1 and k > Kε∨ sup|x|6Kε
f (x),

E[ f (Xn)] = E[ f (Xn)1{|Xn |>k}]+E[ f (Xn)1{|Xn |6k}]

6 εΘ+E[ f (Xn)∧k];

hence

limsup
n→∞

E[ f (Xn)]6 εΘ+E[ f (X )∧k] (Xn
(d)−−−−→

n→∞ X )

6 εΘ+E[ f (X )].

Since this is true for all ε> 0, we conclude that

lim
n→∞ E[ f (Xn)] = E[ f (X )].

The result holds in all generality by writing f = f+− f−. ■
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Exercise 2.4.23 (True or false?). Prove, or disprove (by giving a counterexample), briefly the follow-
ing statements. We consider real r.v. on some general probability space (Ω,A ,P).

1. If |Xn −X |→ 0 a.s., then E[|Xn −X |] → 0.

2. If Xn → X in probability and (E[X 2
n])n∈N is bounded, then E[|Xn −X |] → 0.

3. If Xn tends to 0 in probability, then so does (X1 +·· ·+Xn)/n.

4. If E[|Xn −X |] → 0, then |Xn −X |→ 0 a.s.

Solution of Exercise 2.4.23.

1. False2: take e.g. Xn := n1{U61/n}, where U is uniformly distributed on (0,1). Then there is Xn → 0
almost surely, whereas E[Xn] = 1 for every n ∈N.

2. True: let C := supn∈NE[X 2
n] <∞. Extracting a subsequence converging a.s., we have also E[X 2]6

C by Fatou’s lemma. As 1 =1{|Xn−X |6ε}+1{|Xn−X |>ε}, the triangle inequality and Cauchy–Schwarz
inequality give

E[|Xn −X |]6 ε+E[|Xn −X |2]1/2P(|Xn −X | > ε)1/2

6 ε+2
p

C P(|Xn −X | > ε)1/2,

hence limsupE[|Xn −X |]6 ε. Taking ε> 0 arbitrary, the conclusion follows.

3. False: take (Xn)n∈N independent with P(Xn = n2) = 1 −P(Xn = 0) = 1/n. Clearly, Xn → 0 in
probability, but (X1 +·· ·+Xn)/n does not since

P

(
1

n2

n2∑
i=1

Xi > 1

)
> 1−P(Xi = 0, n < i 6 n2) = 1− 1

n
−−−−→
n→∞ 1.

4. False: take e.g. (Xn)n∈N independent with P(Xn = 1) = 1 −P(Xn = 0) = 1/n. Then E[|Xn |] =
E[Xn] = 1/n → 0, but Xn does not converge to 0 a.s. because by the second part of the Borel–
Cantelli lemma, Xn = 1 infinitely often, a.s. ■

2.5 Gaussian vectors

Exercise 2.5.1. Let X := (X1, X2, X3) ∈ R3 be a centered random Gaussian vector such that E[X 2
i ] = 1

and E[Xi X j ] = 1/2 for 16 i 6= j 6 3.

1. Give the dispersion matrix and the characteristic function of X.

2. What is the law of X1 −X2 +2X3?

3. Does there exist a ∈R such that X1 +aX2 and X1 −X2 are independent?

2Of course the statement becomes true if there is moreover domination: ∀n, |Xn |6 Y ∈ L1(P).
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4. Show that X admits a density and explicit it.

Solution of Exercise 2.5.1.

1. The dispersion matrix is

D =
 1 1/2 1/2

1/2 1 1/2
1/2 1/2 1

.

The characteristic function isΦ(λ) := exp(−〈λ,Dλ〉/2),λ ∈R3, that is

Φ(x, y, z) = exp

(
−1

2

(
x2 + y2 + z2 +x y +xz + y z

))
, (x, y, z) ∈R3.

2. As X is a centered Gaussian vector, the linear combination X1 − X2 + 2X3 = 〈λ,X〉, where λ :=
(1,−1,2), is a Gaussian random variable with mean 0 and variance 〈λ,Dλ〉 = 12 + (−1)2 +22 +1 ·
(−1)+1 ·2+ (−1) ·2 = 5.

3. Being a linear map of a Gaussian vector, X′ := (X1 + aX2, X1 − X2) is also a Gaussian vector. Its
components are independent if and only if its dispersion matrix is diagonal, that is if and only if

E[(X1 +aX2)(X1 −X2)] = 1+ a

2
− 1

2
−a = 1−a

2

is zero. Hence X1 +aX2 and X1 −X2 are independent if and only if a = 1.

4. We have detD = 1/2 6= 0, so X admits a density. The inverse of D is

D−1 = 1

2

 3 −1 −1
−1 3 −1
−1 −1 3

,

so a density of X is given by

(2π)−3/2
p

2 exp

(
−1

4

(
3x2 +3y2 +3z2 −2x y −2xz −2y z

))
, (x, y, z) ∈R3.

■

Exercise 2.5.2. Let a > 0, X be a N (0,1) random variable, and

Y :=
{

X , if |X | < a,

−X , if |X |> a.

1. Show that Y has the N (0,1) distribution.

2. Express E[X Y ] in terms of the density function f (x) := exp(−x2/2)/
p

2π of X .

3. Is (X ,Y ) a Gaussian random vector?

Solution of Exercise 2.5.2.
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1. For every t ∈R,

P(Y 6 t ) =P(X 6 t , |X | < a)+P(−X 6 t , |X |> a)

=P(X 6 t , |X | < a)+P(X 6 t , |X |> a)

=P(X 6 t ),

where for the second equality we used that −X is distributed like X . Thus Y has the N (0,1)
distribution.

2. Clearly,

E[X Y ] = E[X 21{|X |<a}]−E[X 21{|X |>a}]

= 2E[X 21{|X |<a}]−E[X 2]

= 4

ˆ a

0
x2 f (x)dx −1,

where for the last equality we used that the function x 7→ x2 f (x) is even.

3. We have P(X +Y = 0) = P(|X |> a) > 0, so X +Y cannot be a Gaussian variable. In particular,
(X ,Y ) is not a Gaussian vector. ■

Exercise 2.5.3. Let n > 2 and X1, . . . , Xn be i.i.d. N (µ,σ2) r.v. Prove that the empirical mean and
variance

X̄n := 1

n

n∑
i=1

Xi and S2
n := 1

n

n∑
i=1

(Xi − X̄n)2

are independent.
Hint. Let X′ := (X1 − X̄n , . . . , Xn − X̄n). Check that X := (X̄n ,X′) ∈ Rn+1 is a Gaussian vector. Express its dispersion matrix

using the one of X′ and deduce that X̄n and X′ are independent.

Solution of Exercise 2.5.3. Because the vector (X1, . . . , Xn) has independent Gaussian components, it
is a Gaussian vector. By linearity, X := (X̄n , X1 − X̄n . . . , Xn − X̄n) is a also a Gaussian vector. We can see
that

E[X̄ 2
n]−E[X̄n]2 = Var(X̄n) = σ2

n
,

and for each 16 i 6 n, using that the (X̄n , Xk ), 16 k 6 n, are identically distributed,

E[X̄n(Xi − X̄n)]−E[X̄n]E[Xi − X̄n] = E[X̄n Xi ]−E[X̄ 2
n]−0

= 1

n

n∑
k=1

E[X̄n Xk ]−E[X̄ 2
n]

= E[X̄ 2
n]−E[X̄ 2

n]

= 0.
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Thus the dispersion matrix of X has the form
σ2/n 0 · · · 0

0

D ′...
0

,

where we have noted D ′ ∈ Rn×n the dispersion matrix of the (centered) Gaussian vector X′ := (X1 −
X̄n , . . . , Xn − X̄n). We find that the characteristic function of X is

exp

(
iλ0µ−

λ2
0σ

2

2n

)
exp

(
−〈λ,D ′λ〉

2

)
, λ0 ∈R, λ := (λ1, . . . ,λn) ∈Rn ,

i.e, the product of the characteristic function of X̄n with that of X′. Hence X̄n and X′ are independent,
and since S2

n is a function of X′, so are X̄n and S2
n . ■

Exercise 2.5.4. Let X1,X2, . . . be i.i.d. random vectors in R2. Apply the 2-dimensional CLT in the
following cases:

1. P(X1 = (−1,−1)) =P(X1 = (1,1)) = 1/2;

2. P(X1 = (1,−1)) =P(X1 = (1,1)) =P(X1 = (−1,−1))/2 = 1/4.

Solution of Exercise 2.5.4.

1. Here, X1 is centered with dispersion matrix

D =
(
1 1
1 1

)
.

The multidimensional central limit theorem then gives

X1 +·· ·+Xnp
n

====⇒
n→∞ N (0,D),

which is also the distribution of the degenerate Gaussian vector (N , N ) where N is a standard
Gaussian random variable.

Remark. A Gaussian vector X with singular dispersion matrix D has no density3.

2. Here, E[X1] = (0,−1/2) and the dispersion matrix is

D ′ =
(

1 1/2
1/2 3/4

)
.

3Indeed, suppose it has a density f . As there exists a non-zero vector λ such that Dλ = 0 and consequently,
Var(〈λ,X〉) = 〈λ,Dλ〉 = 0, the vector X lives almost surely in the hyperplane λ⊥, which yet has null Lebesgue measure
(we obtain the contradiction 1 = ´ PX(dx) = ´λ⊥ f (x)dx = 0).
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We have detD ′ = 1/2 so D ′ is invertible; its inverse is

D ′−1 :=
(
3/2 −1
−1 2

)
.

Therefore
X1 +·· ·+Xn + (0,n/2)p

n
====⇒
n→∞ N (0,D ′),

whose a density function is

1

π
p

2
exp

(
−

(
3

4
x2 −x y + y2

))
, (x, y) ∈R2.

■

Exercise 2.5.5. Let X1,X2, . . . be i.i.d. vectors in Rk having the same distribution as X := (ξ1,ξ1 +
ξ2, . . . ,ξ1+·· ·+ξk ), for ξ1, . . . ,ξk i.i.d. with P(ξ1 = 1) =P(ξ1 =−1) = 1/2. Show that (X1+·· ·+Xn)/

p
n has

a limiting distribution which one will describe in terms of a density function.

Solution of Exercise 2.5.5. The covariance matrix of the (centered) vector X is D := (min(i , j ))16i , j6k :
indeed, we have Var(ξ1 +·· ·+ξi ) = i Var(ξ1) = i for 16 i 6 k, and

E[(ξ1 +·· ·+ξi )(ξ1 +·· ·+ξi +·· ·+ξ j )] = E[(ξ1 +·· ·+ξi )2]+0 = i = min(i , j )

for 16 i < j 6 k. The multidimensional central limit theorem then yields

X1 +·· ·+Xnp
n

====⇒
n→∞ N (0,D).

Further, we can see that D = TTT , where T is the plain upper triangular matrix having all its coeffi-
cients equal to 1. Thus D is invertible (detD = 1); its inverse

D−1 =



2 −1
−1 2 −1 (0)

−1
. . . . . .
. . . . . . . . .

(0)
. . . 2 −1

−1 1


has associated quadratic form

〈x,D−1x〉 =
k∑

r=1
(xr −xr−1)2, x := (x1, . . . , xk ) ∈Rk

(with the convention x0 := 0). We conclude that the limiting distribution N (0,D) is given by the den-
sity function

(2π)−k/2 exp

(
−1

2

k∑
r=1

(xr −xr−1)2

)
.

Remark. This is the k-dimensional marginal distribution of the standard Brownian motion at integer
times 1,2, . . . ,k. ■
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Exercise 2.5.6. Let ρ be in between −1 and 1, and µ j ,σ2
j , j = 1,2, be given. Construct Gaussian

variables X1, X2 with means µ1,µ2, variances σ2
1,σ2

2, and correlation ρ.

Solution of Exercise 2.5.6. Suppose constructed Y ,Y1 two i.i.d. N (0,1) r.v. Then Y2 := ρY1+
√

1−ρ2 Y
is still N (0,1), with ρY1,Y2 = ρ. Therefore X j :=µ j +σ j Y j , j = 1,2, are N (µ j ,σ2

j ) r.v. with ρX1,X2 = ρ.

Remark. We have (X1, X2) Normal with mean (µ1,µ2) and covariance
(

σ2
x ρσxσy

ρσxσy σ2
y

)
. ■

Exercise 2.5.7. Let (X ,Y ) be bivariate normal with correlation ρ and σ2
X = σ2

Y . Show that X and
Y −ρX are independent.

Solution of Exercise 2.5.7. Since (X ,Y ) is Gaussian, so is (X ,Y −ρX ). By bilinearity and definition of ρ,
we have Cov(X ,Y −ρX ) = Cov(X ,Y )−ρσ2

X = 0, so X and Y −ρX are independent. ■

Exercise 2.5.8. Let X := (X1, X2, . . . , Xn) be a n-dimensional centered Gaussian vector. We suppose
that there exist k > 2 and 0 = i0 < ·· · < ik = n such that the covariance matrix Q of X is a block-diagonal
matrix consisting of k blocks Q1, . . . ,Qk , i.e,

Q =

Q1 (0)
. . .

(0) Qk

,

with respective sizes i1 − i0, . . . , ik − ik−1. Show that X j := (Xi j−1+1, . . . , Xi j ), 1 6 j 6 k, are independent
centered Gaussian vectors with respective covariance matrices Q j .

Solution of Exercise 2.5.8. Write d j := i j − i j−1. Let 16 j < j ′ 6 k andλ ∈Rd j ,λ′ ∈Rd j ′ . We must check
that

E
[

e i〈λ,X j 〉e i〈λ′,X j ′ 〉
]
= exp

(
−1

2
〈λ,Q jλ〉

)
exp

(
−1

2
〈λ′,Q j ′λ

′〉
)

.

We have 〈λ,X j 〉+〈λ′,X j ′〉 = 〈µ,X〉, where

µr =


λr−i j−1 , if i j−1 < r 6 i j ,

λ′
r−i j ′−1

, if i j ′−1 < r 6 i j ′ ,

0, otherwise,

from which we easily see that 〈µ,Qµ〉 = 〈λ,Q jλ〉+〈λ′,Q j ′λ
′〉. ■

Exercise 2.5.9. Let X be Gaussian N (µ,Q) in Rn , A ∈Rn×n , b ∈Rn , and Y := AX+b.

1. Show that Y is still a Gaussian vector. Give its parameters in terms of Q, A,µ,b.

2. Show that Y is nondegenerate if and only if X is nondegenerate and A is invertible.

3. We suppose det(Q) 6= 0. Find A and b such that Y is standard N (0, I ).

Solution of Exercise 2.5.9.
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1. Since Gaussian vectors are stable by linear maps (by definition), Y is still Gaussian. More pre-
cisely, its characteristic function is

ϕY(u)
def= E

[
e i〈u,AX+b〉

]
= e i〈u,b〉ϕX(ATu)

= exp

(
i〈u, Aµ+b〉− 1

2
〈u, AQ ATu〉

)
, u ∈Rn ,

since ϕX(u) = exp(i〈u,µ〉− 1
2〈u,Qu〉). This shows that Y is N (Aµ+b, AQ AT).

2. Y nondegenerate ⇐⇒ AQ AT invertible ⇐⇒ X nondegenerate and A invertible.

3. We have Y ∼ N (0, I ) ⇐⇒ AQ AT = I and b = −Aµ. Thus we simply need to find A = B−1 such
that Q factorizes into Q = BBT. Since Q is positive-definite, this is possible and known as a
Cholesky factorization of Q. For instance, if Q has matrix diag(λ1, . . . ,λn) in some orthonormal
basis, then we can take “B = √

Q” as having the matrix diag(
√
λ1, . . . ,

√
λn) in this same basis.

(Alternatively, we can take for BT any orthonormal basis of Rn w.r.t. the inner product induced
by Q.) ■

Exercise 2.5.10. Let Y := (Y1, . . . ,Yn) be a nondegenerate Gaussian vector with covariance matrix Q,
X be some random variable with finite variance, and v := (v1, . . . , vn) ∈Rn . Show that

Var

(∑
i=1

vi Yi −X

)
is minimal for v =Q−1 u, where u := (u1, . . . ,un) is given by ui = Cov(Yi , X ), 16 i 6 n.

Solution of Exercise 2.5.10. Let A := ∑
i vi Yi with v as above, and B := ∑

i wi Yi for some other w ∈ Rn .
Then by bilinearity,

Var(B −X ) = Var(B − A+ A−X )

= Var(B − A)+Var(A−X )+2Cov(B − A, A−X ),

where, since Qv −u = 0,

Cov(B − A, A−X ) =
n∑

j=1
(w j − v j )Cov(Y j , A−X ) =

n∑
j=1

(w j − v j )((Qv) j −u j ) = 0.

Thus Var(B −X ) = Var(B − A)+Var(A−X )>Var(A−X ): Var(A−X ) is minimal.

Remark. This is the Pythagorean theorem applied with the inner product Cov(·, ·) in the space of
square-integrable r.v. (up to translation by an a.s. constant variable). ■

Exercise 2.5.11. Let (X ,Y ) be a nondegenerate 2-dimensional centered Gaussian vector, and

Z :=
{

X , if X 2 +Y 2 < 1,

−X , else.

Show that Z is Gaussian, Z ∼ X , but that (X ,Y , Z ) is not a Gaussian vector.
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Solution of Exercise 2.5.11. For every f : R→Rmeasurable,

E[ f (Z )] = E[ f (X )1{X 2+Y 2<1}

]+E[ f (−X )1{X 2+Y 2>1}

]
= E[ f (X )1{X 2+Y 2<1}

]+E[ f (X )1{(−X )2+(−Y )2>1}

]
= E[ f (X )],

where the second equality holds because (X ,Y ) ∼ (−X ,−Y ). Hence Z is Gaussian with Z ∼ X . How-
ever Z −X is not Gaussian because P(Z −X = 0) =P(X 2 +Y 2 < 1) > 0 (since (X ,Y ) is nondegenerate).
In particular (X ,Y , Z ) cannot be a Gaussian vector. ■

2.6 Conditional expectations

Exercise 2.6.1. Let X ,Y be two independent Poisson variables with parametersλ,µ> 0 respectively.
We set N := X +Y .

1. Compute P(X = k | N = n) for k,n ∈Z+.

2. Deduce E[X | N = n] for n ∈Z+, and then E[X | N ].

3. Check that E[X ] = E[E[X | N ]].

Solution of Exercise 2.6.1.

1. We have from independence of (X ,Y ) that N is a Poisson(λ+µ) r.v., and

P(X = k | N = n) = P(X = k,Y = n −k)

P(X +Y = n)

⊥⊥=
(
λk

k !
e−λ · µn−k

(n −k)!
e−µ

)/(
(λ+µ)n

n!
e−(λ+µ)

)
=

(
n

k

)(
λ

λ+µ
)k (

µ

λ+µ
)n−k

.

We see that conditionally on the event {N = n}, the r.v. X is Binomial(n, p) distributed, where
p := λ/(λ+µ). That is to say, conditionally on the variable N , the r.v. X has the Binomial(N , p)
distribution.

2. From our knowledge of the Binomial distribution we see that E[X | N = n] = np, hence E[X |
N ] = N p.

3. On the one hand, E[X ] =λ since X is a Poisson(λ) r.v. On the other hand, E[E[X | N ]] =λE[N ]/(λ+
µ) =λ since N is a Poisson(λ+µ) r.v. ■

Exercise 2.6.2. Let X ,Y be two independent exponential r.v. with parameters λ,µ> 0 respectively.
We set T := min(X ,Y ).

1. What is the law of T ?
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2. Compute E[T | X ].

Hint. Go back to definitions. (Find E[T f (X )] for f : R→Rmeasurable bounded...)

3. Compute E[X | T ].

4. Check that E[E[T | X ]] = E[T ] and E[E[X | T ]] = E[X ].

Solution of Exercise 2.6.2.

1. For every t > 0, P(T 6 t ) = 1−P(X > t ,Y > t )
⊥⊥= 1− e−λt e−µt , so T has the Exponential(λ+µ)

distribution.

2. Because Y is independent of X , the conditioning on X does not affect Y and we can thus simply
integrate w.r.t. the law of Y : E[ f (X ,Y ) | X ] = ´ f (X , y)PY (dy). We here (re)prove this general
result within the notations of the given example. As an intermediate step we have, for every
x > 0,

E[Y 1{Y 6x}] =
ˆ x

0
y µe−µy dy

= [−ye−µy]y=x
y=0 +

ˆ x

0
e−µy dy (i.b.p.)

= 1

µ

(
1−e−µx(1+µx)

)
. (?)

Let now f : R→R be measurable and bounded. Then

E[T f (X )] = E[X f (X )1{Y >X } +Y f (X )1{Y 6X }]

⊥⊥=
ˆ ∞

0

(
xP(Y > x)+E[Y 1{Y 6x}]

)
f (x)PX (dx)

(?)=
ˆ ∞

0

(
xe−µx + 1

µ

(
1−e−µx(1+µx)

))
f (x)PX (dx)

= E
[

1

µ

(
1−e−µX )

f (X )

]
,

where we applied Fubini’s theorem in the second equality (T is integrable!). Hence E[T | X ] =
(1−e−µX )/µ a.s.

3. As another intermediate step we have, for every y > 0,

E[X1{y6X }] =
ˆ ∞

y
xλe−λx dx

=
[
−xe−λx

]x→∞
x=y

+
ˆ ∞

y
e−λx dx (i.b.p.)

= 1

λ
(1+λy)e−λy . (??)
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Let again f : R→R be measurable and bounded. Then, as in Question 2,

E[X f (T )] = E[X f (X )1{Y >X }]+E[X f (Y )1{Y 6X }]

⊥⊥=
ˆ ∞

0
x f (x)P(Y > x)PX (dx)+

ˆ ∞

0
f (y)E[X1{y6X }]PY (dy)

(??)=
ˆ ∞

0

(
λ

λ+µ t + µ

λ(λ+µ)
(1+λt )

)
f (t ) (λ+µ)e−(λ+µ)t︸ ︷︷ ︸

density of T that we made appear

dt

= E
[(

T + µ

λ(λ+µ)

)
f (T )

]
.

Hence E[X | T ] = T + µ
λ(λ+µ) a.s.

4. We have

E[E[T | X ]] = 1

µ

(
1−
ˆ ∞

0
e−µx λe−λxdx

)
= 1

µ

(
1− λ

λ+µ
)
= 1

λ+µ = E[T ],

and

E[E[X | T ]] = E[T ]+ µ

λ(λ+µ)
= 1

λ+µ + µ

λ(λ+µ)
= 1

λ
= E[X ]. ■

Exercise 2.6.3. Let U ,V be two independent standard uniform r.v. on (0,1). Compute

E[(U −V )+ |U ].

Solution of Exercise 2.6.3. The conditional expectation is well defined since (U −V )+ is a nonnegative
(or integrable) r.v. The independence between V and σ(U ) allows us to integrate with respect to the
law of V :

E[(U −V )+ |U ] =
ˆ 1

0
(U − v)+ dv =

ˆ U

0
(U − v)dv = 1

2
U 2.

(We could have proceeded as in Solution of Exercise 2.6.2.2.) ■

Exercise 2.6.4. Let X ,Y ∈ L1(Ω,A ,P).

1. Show that if X = Y a.s., then E[X | Y ] = E[Y | X ] a.s.

2. Conversely, show that if E[X | Y ] = Y and E[Y | X ] = X a.s., then X = Y a.s.

Hint. You may only consider the case X ,Y ∈ L2(P) (show that E[(X −Y )2] = 0).

Solution of Exercise 2.6.4.

1. Note that since X = Y a.s., we may identify L1(Ω,σ(X ),P) and L1(Ω,σ(Y ),P). Let ϕ : R→ R be
measurable and bounded. We have E[Xϕ(Y )] = E[Y ϕ(Y )], so E[X | Y ] = Y . Likewise, E[Y | X ] =
X . Hence E[X | Y ] = E[Y | X ] a.s.
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2. Suppose X ,Y ∈ L2(P) with E[X | Y ] = Y and E[Y | X ] = X a.s. Then

E[(X −Y )2] = E[E[(X −Y )2 | X ]]

= E[X 2 +E[Y 2 | X ]−2X E[Y | X ]︸ ︷︷ ︸
X

]

= E[Y 2]−E[X 2]

= E[X 2]−E[Y 2] (symmetry X ↔ Y )

= 0,

so X = Y a.s. The general case when X ,Y are only L1 is less straightforward. First, for t ∈R,

E[(X −Y )1{X>t }] = E[E[(X −Y )1{X>t } | X ]]

= E[X1{X>t } −E[Y | X ]︸ ︷︷ ︸
X

1{X>t }]

= 0.

But E[(X −Y )1{X>t }] = E[(X −Y )1{X>t ,Y >t }]+E[(X −Y )1{X>t>Y }], so

E[(Y −X )1{X>t ,Y >t }] = E[(X −Y )1{X>t>Y }]> 0.

Exchanging the roles of X and Y shows that the last two expectations above are in fact 0. Since
X −Y > 0 on {X > t > Y }, we have in particular P(X > t > Y ) = 0. Finally,

P(X > Y ) =P
(⋃

t∈Q
{X > t > Y }

)
6

∑
t∈Q

P(X > t > Y )

= 0,

and by symmetry, P(X < Y ) = 0. Hence X = Y a.s. ■

Exercise 2.6.5. Let X := (X1, . . . , Xd ) be a N (0,Γ) centered Gaussian vector in Rd . Compute E[〈λ,X〉 |
〈µ,X〉] forλ,µ ∈Rd (with 〈·, ·〉 the usual inner product in Rd ).

Solution of Exercise 2.6.5. Let N := 〈λ,X〉 and N ′ := 〈µ,rX 〉. Since N is L2 (it is a Gaussian r.v.), the con-
ditional expectation Y := E[N | N ′] coincides with the orthogonal projection of N onto L2(Ω,σ(N ′),P).
But since (N , N ′) is a Gaussian vector (because linear combinations of N and N ′ are also linear com-
binations of X1, . . . , Xd ), this orthogonal projection reduces to that onto the line RN ′ ⊂ L2(Ω,σ(N ′),P).
That is, Y = cN ′ where c ∈R is such that E[(N −Y )N ′] = 0, namely c = Cov(N , N ′)/Var(N ′). In terms of
the covariance matrix Γ, we conclude that

E[〈λ,X〉 | 〈µ,X〉] = 〈λ,µΓ〉
〈mu,µΓ〉 〈µ,X〉

(where the right-hand side is understood to be 0 when µΓ= 0). ■
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Exercise 2.6.6. Suppose (Bn) ∈A N is a partition ofΩ (that is,Ω=⋃
n>1 Bn with Bn 6= ; and Bn∩Bm =

; for n 6= m), and let B :=σ(Bn : n > 1). Show that for every X ∈ L1(Ω,A ,P),

E[X |B] =
∞∑

n=1
E[X | Bn]1Bn .

Solution of Exercise 2.6.6. We first recall the well-known fact that

B =
{ ⋃

n∈S
Bn : S ⊆N

}
(indeed, the right-hand side is a σ-algebra included in B, and contains all Bn ’s). It is then clear that
the B-measurable r.v. E[X |B] can be written as

E[X |B] = ∑
n>1

βn1Bn ,

with βn ∈ R to be determined. Since E[E[X | B]1Bn ] = E[X1Bn ] must be fulfilled for all n > 1, this
entails βnP(Bn) = E[X1Bn ], i.e, βn = E[X | Bn]. ■

Exercise 2.6.7. Let (Ω,A ,P) be a probability space, B ⊆A be a sub-σ-field, and A ∈A be an event.
Show that the event B := {P(A |B) > 0} contains a.s. A (that is, P(A \ B) = 0).

Solution of Exercise 2.6.7. By definition of B ∈B,

0 = E[P(A |B)1Ω\B ] = E[P(A \ B |B)] =P(A \ B). ■

Exercise 2.6.8. Let X ∈ L2(Ω,A ,P) and B ⊆ A a sub-σ-field. We define the conditional variance
of X w.r.t. B by:

Var(X |B) := E[(X −E[X |B])2
∣∣ B

]
.

Prove the law of total variance:

Var(X ) = E[Var(X |B)
]+Var

(
E[X |B]

)
.

Solution of Exercise 2.6.8. On the one hand, Var(X ) = E[X 2]−E[X ]2. On the other hand,

E
[
Var(X |B)

]= E[X 2 −2X E[X |B]+E[X |B]2]
= E[X 2]−E[X E[X |B]

]
,

and

Var
(
E[X |B]

)= E[(E[X |B]−E[X ]
)2

]
= E[X E[X |B]

]−E[X ]2. ■

Exercise 2.6.9. Let X1, X2, . . . be i.i.d. r.v. in L1(P), and Sn := X1 +·· ·+Xn , n > 1.
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1. Find E[X1 | X2], E[Sn | X1], and E[Sn | Sn−1].

2. Show that if (X , Z ) and (Y , Z ) have the same joint law, then for every f : R→Rwith f (X ) ∈ L1(P),
we have E[ f (X ) | Z ] = E[ f (Y ) | Z ]. Deduce E[X1 | Sn].

Solution of Exercise 2.6.9.

1. Note that Sn ∈ L1(P) (because L1(P) is a vector space). Since the Xi ’s are i.i.d., we have E[X1 |
X2] = E[X1], E[Sn | X1] = X1 + (n −1)E[X1], and E[Sn | Sn−1] = Sn−1 +E[X1].

2. Let f : R→R with f (X ) ∈ L1(P). There exists g : R→R measurable such that E[ f (X ) | Z ] = g (Z ).
Now if (X , Z ) and (Y , Z ) have the same joint law, then for every h : R→R bounded measurable,

E[ f (Y )h(Z )] = E[ f (X )h(Z )] = E[g (Z )h(Z )].

This shows that E[ f (Y ) | Z ] = g (Z ) a.s. Consequently, (X1,Sn), . . . , (Xn ,Sn) having all the same
(joint) distribution, we have (using linearity of the conditional expectation)

E[X1 | Sn] = 1

n
E[X1 +·· ·+Xn | Sn] = Sn

n
.

■

Exercise 2.6.10. Let p ∈ (0,1], let Xn , n ∈ N, be a Binomial(n, p) r.v., and, given Xn , let Yn have a
Poisson(Xn) distribution.

1. Compute the mean mn , the variance σ2
n , and the characteristic functionΦn of Yn .

2. Show that
Yn −mn

σn

(d)−−−−→
n→∞ Z ,

where Z ∼N (0,1). Is there a link with the central limit theorem?

Solution of Exercise 2.6.10.

1. We have mn := E[Yn] = E[E[Yn | Xn]] = E[Xn] = np and, by Exercise 2.6.8,

σ2
n = E[Var(Yn | Xn)

]+Var
(
E[Yn | Xn]

)
= E[Xn]+Var(Xn)

= np +np(1−p)

= np(2−p).

Finally,

Φn(t ) = E[E[e itYn | Xn]] = E[e Xn (e it−1)] = (
1−p +p exp(e it −1)

)n
.
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2. Successively,

e
it
σn

−1 = it

σn
− t 2

2σ2
n
+o

(
1

n

)
,

1−exp
(
e

it
σn

−1)=− it

σn
+ t 2

σ2
n
+o

(
1

n

)
,

1−p +p exp
(
e

it
σn

−1)= 1+ it p

σn
− t 2p

σ2
n
+o

(
1

n

)
,

n log
(
1−p +p exp

(
e

it
σn

−1))= itnp

σn
− t 2

��
���XXXXXnp(2−p)

2��@@σ
2
n

+o(1),

and thus

E
[

e it Yn−mn
σn

]
= e− itnp

σn Φn

(
t

σn

)
−−−−→
n→∞ e− t2

2 ,

which is the characteristic function of the standard Normal distribution. We could have con-
cluded directly by applying the CLT (which we somehow reproved): the expression ofΦn shows
that Yn is distributed like the sum of n i.i.d. r.v. with the same law as Y1. ■

Exercise 2.6.11. Let U be a uniformly distributed r.v. on [0,1) and let Xn := bnUc for n > 1. Deter-
mine the conditional law of U given Xn .

Solution of Exercise 2.6.11. For all 06 k < n and t > 0,

P(U 6 t , Xn = k) =


0, if nt < k,

t − k
n , if k 6 nt < k +1,

1
n , if nt > k +1.

Thus, conditionally on Xn , the r.v. U is uniformly distributed on [ Xn
n , Xn+1

n ). That is, for every bounded
measurable function f : R→R,

E[ f (U ) | Xn] =
ˆ Xn+1

Xn

f
( y

n

)
dy.

■

Exercise 2.6.12. Let (X ,Y ) be a random vector in Rn+m with probability density function (p.d.f.) p.

1. Show that Y ∈Rm admits a p.d.f. q and give its expression in terms of p.

2. For each y ∈Rm , we let ν(y, ·) denote the measure on Rn given by

ν(y, A) := 1

q(y)

ˆ
A

p(x, y)dx, A ∈B(Rn)

(with the convention ν(y, A) = 0 if q(y) = 0). Prove that for every bounded measurable function
f : Rn+m →R,

E[ f (X ,Y ) | Y ] =
ˆ

f (x,Y )ν(Y ,dx).
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Solution of Exercise 2.6.12.

1. By Fubini–Tonelli’s theorem, the nonnegative function

y ∈Rm 7→ q(y) :=
ˆ
Rn

p(x, y)dx

is measurable, with integral 1, and for every f : Rm →R bounded measurable,

E[ f (Y )] =
Ï
Rn×Rm

f (y) p(x, y)dxdy =
ˆ
Rn

f (y) q(y)dy.

Thus Y admits q as probability density function.

2. We see from the definition of ν that q(y)ν(y,dx) = p(x, y)dx. Fix f : Rn+m → R bounded mea-
surable. Define

g (y) :=
ˆ
Rn

f (x, y)ν(y,dx), y ∈Rm .

Then, for every bounded measurable function h : R→R,

E[g (Y )h(Y )] =
ˆ
Rm

g (y)h(y) q(y)dy

=
ˆ
Rm

(ˆ
Rn

f (x, y)ν(y,dx)

)
h(y) q(y)dy

=
ˆ
Rm

(ˆ
Rn

f (x, y) p(x, y)dx

)
h(y)dy

=
Ï
Rn×Rm

f (x, y)h(y) p(x, y)dxdy (Fubini–Lebesgue)

= E[ f (X ,Y )h(Y )],

Hence E[ f (X ,Y ) | Y ] = g (Y ). ■

Exercise 2.6.13. Let {Xn}n>0 ⊂ L2(P) such that Sn := X1 +·· ·+Xn , n > 0, defines a martingale. Show
that E[Xi X j ] = 0 for all i 6= j .

Solution of Exercise 2.6.13. Let i < j . Then

E[Xi X j ] = E[E[Xi X j | S0, . . . ,Si ]
]= E[Xi E[S j −S j−1 | S0, . . . ,Si ]︸ ︷︷ ︸

=0

]= 0.

■
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2.7 Martingales

Exercise 2.7.1. Let (Xn)n>0 be a martingale and T a stopping time. Recall that (Xn∧T )n>0 is again a
martingale and that (optional stopping theorem) if T ∈ L∞, then

XT ∈ L1, with E[XT ] = E[X0]. (?)

Show that (?) also holds in the other two following cases:

1. When T <∞ a.s. and (Xn)n>0 is dominated by some r.v. in L1.

2. When T ∈ L1 and (Xn+1 −Xn)n>0 is bounded in L∞.

Hint. Use the dominated convergence theorem.

Solution of Exercise 2.7.1.

1. Since n ∧T always tends to T in Z+∪ {∞} as n → ∞ and T < ∞ a.s., we see that Xn∧T is a.s.
eventually equal to XT (consequently Xn∧T → XT a.s.). Further, (Xn∧T )n>0 is a martingale, so

E[Xn∧T ] = E[X0], (2.3)

The hypothesis of domination says that there is Y ∈ L1 such that a.s., |Xn |6 Y for all n. In partic-
ular, a.s., |Xn∧T |6 Y for all n. The conclusion follows by applying the dominated convergence
theorem.

2. Recall that T ∈ L1 implies T <∞ a.s., so like in Question 1, Xn∧T → XT as n →∞. Now, there is
a constant c > 0 such that a.s., |Xn+1 −Xn |6 c for all n, so

|Xn∧T |6 |X0|+
n∧T∑
k=1

|Xk∧T −X(k−1)∧T |6 |X0|+ cT ∈ L1.

The dominated convergence theorem entails that XT ∈ L1 and allows us again to take the limit
in (2.3).

Remark. These results will be generalized later (stopping theorem for UI martingales). ■

Exercise 2.7.2 (Pig). Let Di , i > 1, be i.i.d. realizations of a fair 6-faced die roll. We define

T := inf{i > 1: Di = 1},

Fn :=σ(D1, . . . ,Dn), n > 0,

and

Sn :=
n∑

i=1
Di , n > 0.

1. Check that T is a (Fn)n>0-stopping time. Compute E[T ].

2. Show that

E[Sn | T ] = 4n1{T>n} +
(

7n +T

2
−3

)
1{T6n}.
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3. Deduce that E[ST ] = 21.

4. Provide an alternative solution to Question 3 using a martingale.

Hint. Determine m ∈R such that (Sn −mn)n>0 is a (Fn)n>0-martingale.

Solution of Exercise 2.7.2.

1. As the entrance time in the Borel set {1} of the (Fn)n>0-adapted process (Dn)n>0, T is a (Fn)n>0-
stopping time. Because T has the geometric distribution on N with success probability 1

6 , we
have E[T ] = 6.

2. Let k ∈ N be any possible value for T . Since {T = k} = {D1 6= 1, . . . ,Dk−1 6= 1,Dk = 1}, we easily
observe that, conditionally on {T = k}:

• the Di , i < k, are independent uniform r.v. on {2, . . . ,6} (each with mean 4);

• the Di , i > k, are independent uniform r.v. on {1, . . . ,6} (each with mean 7
2 );

• and (of course) Dk = 1.

Therefore, for all k > 1 and i > 0,

E[Di | T = k] =


4, if i < k,
7
2 , if i > k,

1, if i = k.

Then, by linearity of expectation,

E[Sn | T = k] = 4(k −1)∧n + 7

2
(n −k)++1{k6n}

= 4n1{k>n} +
(

7n +k

2
−3

)
1{k6n}.

3. It follows that
E[ST ] = E[E[ST | T ]] = E[4T −3] = 4E[T ]−3 = 21.

4. Let m := E[D1] = 7
2 . Then Sn −mn, n > 0, is the partial sum of independent, integrable, and cen-

tered Fn-measurable variables, so (Sn −mn)n>0 is a (Fn)-martingale. Because T is a (Fn)n>0-
stopping time, we deduce from the stopping theorem that the process

Mn := Sn∧T −m(n ∧T ), n > 0,

is also a martingale. In particular E[Mn] = E[M0] = 0, that is E[Sn∧T ] = mE[n ∧T ]. Letting now
n →∞ yields (by monotone convergence) E[ST ] = mE[T ] = 7

2 ·6 = 21. ■

Exercise 2.7.3 (Pokémon Go). Imagine that at each time n = 1,2, . . ., you find one of the m Pokémon™,
assuming they all appear independently and uniformly at random. Let R0 := m and Rn be the number
of different Pokémon you still need to capture after time n in order to complete your Pokédex.
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1. Justify that conditionally on Rn , the r.v. Rn −Rn+1 is Bernoulli(Rn/m) distributed.

2. Let h(k) :=∑
16i6k 1/i for every k > 0. Deduce from Question 1 that, respectively,

Mn :=
( m

m −1

)n
Rn , and Ln := n

m
+h(Rn), n > 0,

define a martingale and a submartingale w.r.t. the natural filtration (Fn)n>0.

3. Let T := inf{n > 0: R(n) = 0} be the time you catch them all.

a) Check that T is a (Fn)n>0-stopping time.

b) Show that Xn := Ln∧T , n > 0, becomes a martingale and deduce that T ∈ L1.

c) Deduce E[T ] (apply Exercise 2.7.1). Give an equivalent when m is large.

Solution of Exercise 2.7.3.

1. Clearly, Rn −Rn+1 ∈ {0,1} and is 1 if and only if we find a new Pokémon at time n + 1, which
conditionally on Rn = k ∈ {0, . . . ,m} happens with probability k/m. That is, conditionally on Rn ,
the r.v. Rn −Rn+1 is Bernoulli(Rn/m) distributed.

2. In particular E[Rn −Rn+1 | Rn] = Rn/m, and thus E[Rn+1 | Rn] = (1− 1/m)Rn . We then readily
have the martingale property for (1−1/m)−nRn = Mn . Next, (Ln)n>0 is clearly (Fn)n>0-adapted,
in L1, and Ln+1 −Ln = 1/m − (Rn −Rn+1)/Rn . Hence

E[Ln+1 −Ln |Fn] = 1

m
1{Rn=0} > 0. (2.4)

3. a) Clear, as hitting time of the Borel set {0} by the adapted process (Rn)n>0. More straightfor-
wardly: {T = n} = {R0 6= 0, . . . ,Rn−1 6= 0,Rn = 0} ∈Fn .

Remark. Since (Rn)n>0 is non-increasing inN and the nonnegative martingale (Mn)n>0 must converge a.s.,

we already see that Rn = 0 eventually, so T <∞ a.s.

b) Since {T > n} = {Rn 6= 0} ∈Fn , we see by (2.4) that (Xn)n>0 is a martingale:

E [Xn+1 −Xn |Fn] =1{T>n}E[Ln+1 −Ln |Fn] = 0.

Then

h(m) = E[X0] = E[Xn∧T ] = 1

m
E[n ∧T ]+E[h(Rn∧T )]>

1

m
E[n ∧T ],

where n ∧T ↑ T , so we deduce from Fatou’s lemma that E[T ]6m h(m) <∞.

c) It is plain that |Xn | 6 T /m + h(m) ∈ L1 or that (Ln+1 − Ln)n>0 is bounded (by 2) in L∞.
We may thus apply either of the two criteria of Exercise 2.7.1: then XT = LT ∈ L1, and
h(m) = E[L0] = E[LT ] = E[T /m] (note that h(RT ) = 0 because RT = 0, a.s.). Hence E[T ] =
m h(m) ∼ m logm as m →∞.

Remark. This problem is known as the Coupon collector’s problem. ■
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Exercise 2.7.4. Let θ ∈R, (Xk )k∈N be a sequence of i.i.d. N (0,1) r.v., and

Sn :=
n∑

k=1
Xk , n > 0.

1. Find f : R→R such that M (θ)
n := exp(θSn −n f (θ)), n > 0, is a martingale.

2. Does M (θ)
n converge as n →∞, almost surely? in L1?

Solution of Exercise 2.7.4.

1. Let Fn := σ(X1, . . . , Xn), n > 0. Clearly, eθSn is Fn-mesurable, and since by independence Sn is
N (0,n)-distributed we have E[eθSn ] = enθ2/2 <∞. Finally

E[exp(θ(Sn+1 −Sn)) |Fn] = E[exp(θS1)] = eθ
2/2,

so that for f (θ) := θ2/2, the process (M (θ)
n )n>0 is a (Fn)n>0-martingale.

2. On the one hand, the convergence theorem for nonnegative (super)martingales tells us that Mn

converges almost surely as n →∞ to some r.v. M (θ)∞ . On the other hand, we know from the law
of large numbers that Sn = o(n), so if θ 6= 0 we have

log Mn = n(θSn/n − f (θ)) −−−−→
n→∞ −∞,

hence M (θ)∞ = 0 a.s. Since E[M (θ)
n ] = 1 for every n, we conclude that, unless θ = 0 (in which case

M (θ) ≡ 1), M (θ)
n cannot converge in L1. ■

Exercise 2.7.5. Let E := {A,B} be a set with two elements, m ∈ N, and consider an initial popula-
tion X0 ∈ E m of m individuals, each of which has either type A or type B. Suppose that at each time
n = 1,2, . . ., a new population Xn is born in such a way that each individual inherits the type of one
individual in the previous generation Xn−1, which is chosen independently and uniformly at random.
Formally

Xn = (Xn−1(σn,1), . . . , Xn−1(σn,m)) ∈ E m ,

with (σn,i )n∈N,16i6m an independent family of i.i.d. uniform r.v. on {1, . . . ,m}.

1. What do you think will eventually happen to the population?

Let An , n > 0, denote the number of individuals in Xn which have type A.

2. Justify that conditionally on An , the r.v. An+1 is Binomial(m, An/m) distributed.

3. Show that (An)n>0 is a martingale converging a.s.

4. Check that E[A2
n+1 | An] = m−1

m A2
n + An . Deduce that

Mn := (m −1)(m − An)+ (m An − A2
n)

( m

m −1

)n
, n > 0,

defines another martingale.
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5. Prove your conjecture in Question 1.

Solution of Exercise 2.7.5.

1. We conjecture that after some time, all individuals are of the same type, i.e, there exists n0 such
that Xn = Xn0 ∈ {A}m ∪ {B}m for all n > n0.

2. We see that An+1 is the number of balls of type A we would obtain by drawing with replace-
ment m indistinguishable balls from an urn containing An balls labeled by A and m − An balls
labeled by B. Thus, conditionally on An , the r.v. An+1 is Binomial(m, An/m) distributed.

3. In particular E[An+1 | An] = m · An/m = An . Hence (An)n>0 is a nonnegative martingale. By the
martingale convergence theorem, its limit A∞ as n →∞ then exists almost surely.

4. UnderP( · | An) we have Var(An+1 | An) = m·(An/m)·(1−An/m) (variance of a Binomial(m, An/m)
r.v.), so

E[A2
n+1 | An] = Var(An+1 | An)+E[An+1 | An]2 = m −1

m
A2

n + An .

For Fn :=σ(A0, . . . , An), it is then plain that Mn is Fn-measurable, integrable, and that

E[Mn+1 |Fn] = (m −1)(m − An)+ (m An − m−1
m A2

n − An)
( m

m −1

)n+1
= Mn .

5. Because 0 6 An 6 m, it is clear that Mn is further nonnegative. By the martingale convergence
theorem, Mn then converges almost surely. In particular

(m −1)(m A∞− A2
∞)

( m

m −1

)n

must be a.s. bounded in n, which is possible only if m A∞− A2∞ = 0 a.s., i.e, A∞ ∈ {0,m}. But An

is integer-valued, so we can conclude that An ∈ {0,m} when n is sufficiently large, almost surely,
which proves our conjecture.

Remark. Applying Exercise 2.7.1 for the stopping time T := inf{n > 0: An ∈ {0,m}} provides the law

of A∞: we find P(A∞ = m) = A0/m and P(A∞ = 0) = (m − A0)/m. ■

Exercise 2.7.6. Let (Xn)n∈N be a sequence of independent r.v. We suppose that there exists a con-
stant C > 0 such that the following three (deterministic) series

(a)
∑

n∈N
P(|Xn | >C ), (b)

∑
n∈N

E
[

Xn1{|Xn |6C }
]
, (c)

∑
n∈N

Var
(
Xn1{|Xn |6C }

)
,

all converge (in R). Show that the series
∑

n∈N
Xn converges almost surely.

Hint. Show that Mn :=
n∑

k=1

(
Xk1{|Xk |6C } −E

[
Xk1{|Xk |6C }

])
, n > 0, is bounded in L2(P).
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Solution of Exercise 2.7.6. The given process (Mn)n>0 is a martingale (defined as a sum of indepen-
dent, integrable, centered r.v.). The convergence of (c) shows that this martingale is indeed bounded
in L2(P): for every n > 0,

E[M 2
n] = Var(Mn)

⊥⊥=
n∑

k=1
Var

(
Xk1{|Xk |6C }

)
6

∞∑
k=1

Var
(
Xk1{|Xk |6C }

)<∞.

By the Lp -convergence theorem, the martingale (Mn)n>0 converges a.s. (and in L2(P)). Adding the
convergence of (b), we deduce the a.s. convergence of the series∑

n∈N
Xn1{|Xn |6C }. (?)

Finally, by the (first) Borel–Cantelli lemma, the convergence of (a) entails that the event {|Xn | 6 C }
must occur for n large enough with probability 1, implying that the convergence of

∑
n∈N Xn is a.s.

equivalent to that of (?). The conclusion follows.

Remark. Conversely, the three series (a), (b), and (c) converge (for any C > 0) if the series Σn∈NXn

converges almost surely [Kolmogorov’s three-series theorem]. ■

Exercise 2.7.7 (A counterexample). Let T be a r.v. in N and (Yk )k∈N be an independent family of
i.i.d. r.v. with Var(Y1) = 1 and E[Y1] = 0. We set Fn :=σ(T,Y1, . . . ,Yn) and

Xn :=
n∑

k=1
Yk , n > 0.

1. Show that (Xn)n>0 is a (Fn)n>0-martingale which is not bounded in L1(P).

2. Give an example of distribution for T such that the (Fn)n>0-stopped martingale (Xn∧T )n∈N is
still not bounded in L1(P) (although it converges almost surely).

Solution of Exercise 2.7.7.

1. You (should) already know that (Xn)n>0 is a (Fn)n>0-martingale. Besides, the unboundedness
in L1(P) is not new and follows e.g. from the central limit theorem (Exercise 2.4.6). More pre-
cisely,

p
n =O(E[|Xn |]) as n →∞.

2. By independence between T and (Xn)n∈N (and monotone convergence theorem),

E[|Xn∧T |] =
∞∑

k=1
P(T = k)E[|Xn∧k |]

>
n∑

k=1
P(T = k)E[|Xk |].

Since
p

k = O(E[|Xk |]), the latter sum diverges if k−3/2 = O(P(T = k)), k →∞. Hence, if we take
for instance the probability distribution

P(T = k) = 1p
k
− 1p

k +1
, k ∈N,

then (Xn∧T )n∈N converges to XT a.s., while it is not bounded in L1(P). ■

87

mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises
https://en.wikipedia.org/wiki/Kolmogorov's_three-series_theorem


A few exercises B. Dadoun

Exercise 2.7.8. Let S,T be two (Fn)n>0-stopping times and X ∈ L1(P). Show that

E[E[X |FS] |FT ] = E[E[X |FT ] |FS] = E[X |FS∧T ].

Hint. Apply the stopping theorem... a few times.

Solution of Exercise 2.7.8. On the one hand, we observe that Xn := E[X |Fn], n > 0, defines a uniformly
integrable (Fn)n>0-martingale. On the other hand, applying the stopping theorem for the stopping
time n ∧T, n ∈ N, entails that Xn∧T = E[X | Fn∧T ], so the (Fn)n>0-martingale (Xn∧T )n>0 is also uni-
formly integrable. Applying again the stopping theorem, but to this stopped martingale and for the
stopping time S, yields

XS∧T = E[XT |FS].

Now, two other applications of the stopping theorem show that XT = E[X | FT ] and XS∧T = E[X |
FS∧T ]. The conclusion follows (exchanging the roles of S and T ). ■

Exercise 2.7.9 (Other counterexamples). Let f : N→ R measurable and T be a N-valued r.v. such
that f (T ) ∈ L1(P). For every n > 0, define Fn :=σ({T = k}, k 6 n) and

Xn :=1{T6n} f (T )+1{T>n}r (n), where r (n) := E[1{T>n} f (T )]

P(T > n)
.

1. Check that T is a (Fn)n>0-stopping time and that (Xn)n>0 is a uniformly integrable (Fn)n>0-
martingale.

2. In this question we suppose that f (k) = 2k k−2 and that P(T = k) = 2−k , k ∈N.

a) Show that XT−1 ∉ L1(P). What is wrong regarding the stopping theorem?

b) Deduce that (Xn)n>0 is not dominated in L1(P).

3. In this question we suppose that f (k) = logk, k ∈N, and that, as k →∞,

P(T = k) = 1

k2(logk)2
+O

(
1

k2(logk)3

)
.

a) Check that T ∈ L1(P), while T ∉ L2(P).

b) Show that (Xn+1 −Xn)n>0 is bounded in L∞(P).

Hint.
∑

k>n

1

k2(logk)p = 1

n(logn)p +O

(
1

n(logn)p+1

)
as n →∞, for p ∈ {1,2}.

c) Show that
T∑

k=1
Xk ∉ L1(P).

Solution of Exercise 2.7.9.

1. Clearly T is a stopping time. We further observe that Xn = E[ f (T ) | Fn], n > 0. By the equiva-
lence theorem, (Xn)n>0 is a uniformly integrable (Fn)n>0-martingale.

2. Note that in this question, indeed, f (T ) ∈ L1(P): E[2T T −2] =∑
k>1 k−2 <∞.
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a) We have XT−1 = r (T −1), where

r (n) = 2n
∑

k>n

1

k2
∼ 2n

n
, as n →∞.

Therefore XT−1 ∉ L1(P):

E[XT−1] = E[r (T −1)] = 1

2

∞∑
k=0

2−k r (k) =∞.

There is of course no contradiction with the stopping theorem: we cannot apply it because
T −1 is not a (Fn)n>0-stopping time!

b) Obviously supn>0 Xn > XT−1, so E[supn>0 Xn] =∞ by 2.a). This shows that (Xn)n>0 is not
dominated in L1(P).

3. a) By Bertrand’s test, (nP(T = n))n∈N is summable whereas (n2P(T = n))n∈N is not. Thus
T ∈ L1(P) (in particular f (T ) = logT ∈ L1(P)), but T ∉ L2(P).

b) By triangle inequality,

|Xn+1 −Xn |6
∣∣log(n +1)− r (n)

∣∣+ ∣∣r (n +1)− r (n)
∣∣.

But as n →∞ (using the indications),

P(T > n) = ∑
k>n

(
1

k2(logk)2
+O

(
1

k2(logk)3

))
= 1

n(logn)2
+O

(
1

n(logn)3

)
,

and

E[1{T>n} f (T )] = ∑
k>n

(
1

k2 logk
+O

(
1

k2(logk)2

))
= 1

n logn
+O

(
1

n(logn)2

)
,

so r (n) = logn +O(1). It follows that (Xn+1 −Xn)n>0 is bounded in L∞(P).

c) We deduce from the monotone convergence theorem, our computations in 3.b) and Bertrand’s
test that

E

[
T∑

k=1
Xk

]
=

∞∑
k=1

E
[

Xk1{T>k}
]
>

∞∑
k=1

r (k)P(T > k) = ∞.
■

Exercise 2.7.10. On the filtered probability space (Ω,F , (Fn)n>0,P), let (Xn)n>0 be a martingale
and T be a stopping time. We suppose that

P(T <∞) = 1, E[|XT |] <∞, and lim
n→∞E[|Xn |1{T>n}] = 0.

Show that E[XT ] = E[X0].

Solution of Exercise 2.7.10. By the stopping theorem (Xn∧T )n>0 is also a martingale, so

E[X0] = E[Xn∧T ] = E[XT1{T6n}]+E[Xn1{T>n}].

On the one hand, the last term tends to 0 as n → ∞ by the third assumption. On the other hand,
we observe that XT1{T6n} converges a.s. to XT (because T <∞ a.s.), and is also dominated by XT ∈
L1(Ω,F ,P). Therefore E[XT1{T6n}] → E[XT ] by dominated convergence, and we thus conclude that
E[XT ] = E[X0]. ■
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Exercise 2.7.11. On (Ω,F , (Fn)n>0,P), let (Xn)n>0 be an adapted, integrable process,

An :=
n∑

k=1
E[Xk −Xk−1 |Fk−1], n > 0,

and

Mn := Xn − An , n > 0.

1. Show that (An)n>0 is a predictable process.

2. Show that (Mn)n>0 is a martingale.

3. Suppose we are given a predictable process (A′
n)n>0 with A′

0 = 0 and a martingale (M ′
n)n>0 such

that Xn = M ′
n + A′

n , n > 0. Show that A′
n = An and M ′

n = Mn a.s. for all n > 0.

4. We suppose in this question that (Xn)n>0 is a nonnegative submartingale.

a) Show that An 6 An+1 a.s. for all n > 0. We write A∞ := limn→∞ An ∈ [0,∞].

b) Show that if E[A∞] <∞, then (Xn)n>0 converges a.s.

c) For a > 0, let Ta := inf{n > 0: An+1 > a}.

i- Check that Ta is a stopping time, and that E[Xn∧Ta ]6 a +E[X0].

ii- Deduce that (Xn)n>0 converges a.s. on the event {Ta =∞}.

iii- Conclude that (Xn)n>0 converges a.s. on the event {A∞ <∞}.

d) We suppose that the increments of (Xn)n>0 are dominated in L1(Ω,F ,P):

E[S] <∞, where S := sup
n>1

|Xn −Xn−1|. (?)

Show that limsupn→∞ Xn =∞ a.s. on the event {A∞ =∞}.

5. We suppose in this question that (Xn)n>0 is a martingale satisfying to (?). Show that a.s. as
n →∞, Xn either converges or oscillates, that is

lim
n→∞Xn exists in R or

(
liminf

n→∞ Xn =−∞ and limsup
n→∞

Xn =∞
)
.

6. Prove the conditional Borel–Cantelli lemma: if En ∈Fn , n ∈N, then (up to a P-null set)

{
limsupEn

}= { ∞∑
n=1

P(En |Fn−1) =∞
}

.

Solution of Exercise 2.7.11.

1. Clearly, A0 = 0 and An is Fn−1-measurable for every n > 1.

2. Since Xn and An are Fn-integrable r.v., so is Mn , and plainly E[Mn+1 −Mn |Fn] = 0.
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3. We see that Mn −M ′
n = A′

n − An , n > 0, is a predictable martingale:

Mn −M ′
n = E[Mn −M ′

n |Fn−1] = Mn−1 −M ′
n−1, n > 1.

Because M0 −M ′
0 = A′

0 − A0 = 0, it follows that M ′
n = Mn and A′

n = An for all n > 0.

4. a) By the submartingale property E[Xn −Xn−1 |Fn−1]> 0, so An−1 6 An , n > 1.

b) By monotone convergence, E[A∞] <∞ ⇐⇒ supn>0E[Xn] <∞. In this case the submartin-
gale (Xn)n>0 is bounded in L1, and therefore converging a.s.

c) i- As entrance time in the Borel set (a,∞) of the (Fn)n>0-adapted process (An+1)n>0, the
r.v. Ta is a stopping time. By the stopping theorem,

E[Xn∧Ta ] = E
[

An∧Ta︸ ︷︷ ︸
6a (by def. of Ta )

]
+E[Mn∧Ta ]6 a +E[M0∧Ta ] = a +E[X0],

ii- Because the submartingale (Xn∧Ta )n>0 is bounded in L1, it a.s. converges (in R). It
remains to note that Xn = Xn∧Ta on the event {Ta =∞}.

iii- Plainly {A∞6 a} = {Ta =∞} (monotonicity), so {A∞<∞} = ⋃
a∈N{Ta =∞}. By Ques-

tion 4.c)ii- and σ-additivity, (Xn)n>0 a.s. converges on {A∞<∞}.

d) Introduce the stopping time Ra := inf{n > 0: Xn > a}. Then (Mn∧Ra )n>0 is a martingale. We
have (setting X−1 := X0)

E[Xn∧Ra ] = E[Xn∧Ra−1]+E[Xn∧Ra −Xn∧Ra−1]6 a +E[X0]+E[S] <∞,

so

E[An∧Ra ] = E[Xn∧Ra ]−E[Mn∧Ra ]6 a +E[S] <∞.

Hence E[A∞∧Ra ] < ∞ by monotone convergence. This implies in particular that P(A∞=
∞,Ra =∞) = 0 for all a ∈ N, that is Ra < ∞ a.s. on the event {A∞=∞}. By σ-additivity,
supn>0 Xn =∞ a.s. on the event {A∞=∞}. Because Xn <∞ a.s. for all n, this is equivalent
to limsupn→∞ Xn =∞ a.s.

5. We know that X +
n , n > 0, and X −

n , n > 0, are nonnegative submartingales. Further, E[X +
k −X +

k−1 |
Fk−1] = E[X −

k − X −
k−1 | Fk−1] (since Xn = X +

n − X −
n , n > 0, is a martingale). By Question 4.c)iii-

, a.s. on {A∞ <∞}, the sequences (X +
n )n>0 and (X −

n )n>0 converge, i.e, limn→∞ Xn exists in R.
By Question 4.d), a.s. on {A∞=∞}, we have limsupn→∞ X ±

n =∞, i.e, liminfn→∞ Xn = −∞ and
limsupn→∞ Xn =∞.

6. Clearly, Xn := ∑n
k=1 IEk −

∑n
k=1P(Ek | Fk−1), n > 0, is a martingale whose increments are dom-

inated in L1 (we have E[S] 6 2 in (?)). It thus follows from Question 5 that with probability 1,
either Xn oscillates (which means that both nonnegative sums in the definition of Xn diverge
to ∞) or Xn converges (which means that both sums converge). Hence, with probability 1,
both sums in the definition of Xn a.s. have the same nature. In other words, for P-a.e. ω ∈ Ω,∑

nP(En | Fn−1)(ω) =∞ if and only if ω ∈ En for infinitely many n (i.e, ω ∈ {limsupEn}). (This
extends the Borel–Cantelli lemmas!) ■
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Exercise 2.7.12. Let U1,U2, . . . be i.i.d. Uniform(0,1) r.v. Let X0 be any r.v. on (0,1) independent of
(Ui )i>1, and define by induction

Xn := t Xn−1 + (1− t )1{Un6Xn−1}, n > 1,

where t ∈ (0,1) is fixed.

1. Show that (Xn)n>0 is a martingale converging a.s. and in Lp for every p > 1.

2. Determine the law of X∞ := limn→∞ Xn .

Hint. Compute E[(Xn+1 −Xn)2].

Solution of Exercise 2.7.12.

1. Clearly, (Xn)n>0 is adapted to the filtration Fn := σ(X0,U1, . . . ,Un), n > 0. It is further plain by
induction on n that Xn ∈ (0,1). Finally, for every n > 1,

E[Xn −Xn−1 |Fn−1] = (1− t ) ·
[
P(Un 6 Xn−1 |Fn−1)︸ ︷︷ ︸

=Xn−1

−Xn−1

]
= 0.

Thus (Xn)n>1 is a bounded martingale. In particular it converges a.s. and in Lp , p > 1.

2. We have (by independence of Un+1 and Xn)

E[(Xn+1 −Xn)2] = (1− t )2E
[(
1{Un+16Xn } −Xn

)2
]

= (1− t )2E
[

Xn(1−Xn)2 + (1−Xn)X 2
n

]
= (1− t )2E[Xn(1−Xn)].

By passing to the limit in L2, we obtain E[X∞(1 − X∞)] = 0, and since X∞ ∈ [0,1] a.s., it fol-
lows that X∞ ∈ [0,1] a.s. Besides, E[X∞] = limn→∞E[Xn] = E[X0]. We conclude that X∞ is a
Bernoulli(E[X0]) random variable. ■

Exercise 2.7.13. Let Xn , n > 1, be independent nonnegative r.v. with mean 1, and

Mn :=
n∏

i=1
Xi , n > 0.

1. Show that M∞ := limn→∞ Mn exists almost surely, and E[M∞]6 1.

2. Let an := E[
p

Xn], n > 1. Prove that the following conditions are equivalent:

(a) E[M∞] = 1;

(b) Mn → M∞ in L1(P);

(c) (Mn)n>0 is uniformly integrable;

(d)
∏

k>1 ak > 0;
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(e)
∑

k>1(1−ak ) <∞.

3. Show that if one of the above condition is not satisfied, then M∞ = 0 a.s.

4. Express M∞ in the particular case where the Xn , n ∈N, are i.i.d.

Solution of Exercise 2.7.13.

1. For all n > 0, E[|Mn |] ⊥⊥= ∏n
k=1E[Xk ] = 1 <∞ and E[Mn+1 |Fn] = MnE[Xn+1] = Mn , so (Mn)n>0 is

a nonnegative, therefore a.s. converging martingale. By Fatou’s lemma its a.s. limit M∞ satisfies
to E[M∞] = E[liminf Mn]6 liminf E[Mn] = 1.

2. Let us introduce the auxiliary process

Nn =
n∏

k=1

p
Xk

ak
, n > 0.

Then (Nn)n>0 is a product of 1-mean independent r.v., so it is a martingale. Being nonnegative,
it converges a.s. towards an a.s. finite r.v. N∞, which fulfills

N∞ =
p

M∞∏
k>1 ak

.

Let us show the equivalence of all stated conditions.

(b) =⇒ (a) is obvious by passing to the limit in L1(P). Further, as Mn → M∞ in P, we have (b) ⇐⇒
(c) by the L1-convergence theorem. The equivalence (d) ⇐⇒ (e) is quite elementary : we have
0 < ak = E[

p
Xk ]6

√
E[Xk ] = 1 by Cauchy–Schwarz’ inequality, and

1−
n∑

k=1
(1−ak )6

n∏
k=1

ak 6 exp

(
−

n∑
k=1

(1−ak )

)
(write

n∏
k=1

(1− (1−ak )) = 1−
n∑

k=1
(1−ak )+

n∑
m=2

(−1)m
∑

16k1<···<km6n
(1−ak1 ) · · · (1−akm )

to obtain the first inequality; the second one follows from the concavity of the logarithm). Now if
E[M∞] = 1, then there exists a P-nonnegligible set on which M∞ > 0 and N∞ <∞, so

∏
k>1 ak >

0. Thus (a) =⇒ (d). Conversely, if
∏

k>1 ak > 0, then

E[N 2
n] = 1∏n

k=1 ak
6

n→+∞
1∏

k>1 ak
<∞,

so the martingale (Nn)n>0, bounded in L2(P), converges a.s. and in L2 toward N∞. By passing to
the limit (in L2),

1(∏
k>1 ak

)2 = E[M∞](∏
k>1 ak

)2 ,

i.e, E[M∞] = 1. Thus (d) =⇒ (a). Finally, (a) =⇒ (b) is a consequence of Riesz–Scheffé’s lemma
(Exercise 1.1.24): because M∞ and Mn , n > 0, belong to L1(P) and E[M∞] = 1 = limn→+∞E[Mn],
we have Mn → M∞ in L1(P).
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3. Suppose one of the above conditions is not fulfilled. Then
∏

k>1 ak = 0 and, a.s.,

M∞ = N 2
∞

∏
k>1

ak = 0.

4. If the Xn ,n > 1, are i.i.d., then ak = a1 for all k > 1, and (e) is not fulfilled if and only if a1 < 1; in
this case M∞ = 0 a.s. by Question 3. The case a1 = 1 implies X1 = 1 a.s. (because there is equality
in Cauchy–Schwarz’ inequality), and therefore M∞ = 1 a.s.

Remark. We can derive this last result more directly using the law of large numbers. Suppose
first P(X1 = 0) = 0. By Jensen’s inequality, ` := E[log(X1)] 6 log(E[X1]) = 0, with equality if and
only if X1 = 1 a.s. (log is a strictly concave function). But the law of large numbers entails

log(Mn)

n
−−−−→
n→∞ `, a.s.

Thus M∞ = 0 a.s. when P(X1 = 1) < 1 (and so `< 0). If P(X1 = 0) > 0, then we also have M∞ = 0
a.s. since P(

⋃
n>0{Mn = 0}) = lim↑

n→∞
P(Mn = 0) = lim

n→+∞1−P(X1 > 0)n = 1. ■

Exercise 2.7.14 (Counterexamples).

1. Let U be a Uniform(0,1) r.v. and Xn := n1{nU<1}, n > 1. Show that (Xn)n>1 is bounded in L1(P)
but not uniformly integrable.

2. Show that the two following families are uniformly integrable but not dominated in L1(P) (that
is, E[supX∈X |X |] =∞):

a) X := {Xn,k }n>0
06k<22n

with Xn,k := 2n1{k622nU<k+1} and U ∼ Uniform(0,1);

b) X := {Xn}n>1 with Xn := n AnBn , An ,Bn , n > 1, Bernoulli( 1
n ) r.v., all independent.

Hint. Use Borel–Cantelli lemmas to prove that Xn → 0 a.s., and that E[Xn |F ] → 0 in L1(P)
but not a.s., where F :=σ(An : n > 1).

3. Let Xn , n > 1, be independent r.v. with P(Xn = 1−n2) = 1−P(Xn = 1) = n−2. Show that Sn :=
X1 + ·· · + Xn , n > 0, defines a martingale converging a.s. to +∞. Is this in contradiction with
Exercise 2.7.11.5?

Solution of Exercise 2.7.14.

1. We have E[|Xn |] = E[Xn] = nP(nU < 1) = 1, so (Xn)n>1 is bounded in L1(P). But it is not uni-
formly integrable because E[|Xn |1{|Xn |>a}] = nP(nU < 1) = 1 for all n > a > 0.

2. a) If a > 0, then E[|Xn,k |1{|Xn,k |>2a }] = 2−n1{n>a} 6 2−a for all n > 0 and 06 k < 22n . Therefore

limsup
a→∞

sup
n>0

06k<22n

E[|Xn,k |1{|Xn,k |>a}] = 0,

whereas
sup
n>0

06k<22n

|Xn,k |> sup
n>0

Xn,b22nUc = sup
n>0

2n =∞.

94

http://benjamin.dadoun.free.fr/afewexerciseswithsolutions.pdf?c
mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


B. Dadoun 2.7. MARTINGALES

b) On the one hand, Xn ∈ {0,n} with P(Xn = n) = P(An = Bn = 1) = n−2, so by the first Borel–
Cantelli lemma, Xn = 0 eventually, a.s. On the other hand, by the second Borel–Cantelli
lemma, the independent variables E[Xn | F ] = An , n > 1, equal 1 infinitely often, a.s., so
they converge in L1(P), but not a.s. Therefore (Xn)n>1 cannot be dominated in L1(P) be-
cause the conditional dominated convergence theorem would entail that E[Xn | F ] tends
to 0 a.s. It is however uniformly integrable because it converges a.s. and in L1(P).

3. The Xn are independent, integrable r.v. with E[Xn] = n−2(1−n2)+1−n−2 = 0, so (Sn)n>0 is a mar-
tingale. Now the first Borel–Cantelli lemma entails that a.s., Xn = 1 for all but finitely many n,
hence Sn →+∞ a.s. This is not in contradiction with Exercise 2.7.11.5 because E[supn>0 |Xn |] =
∞ (eventhough supn>0 |Xn | <∞ a.s.). Indeed, the probabilities

P

(
sup
n>0

|Xn |> k

)
= 1−P(∀i >

p
k +1, Xi = 1

)= 1− ∏
i>

p
k+1

(
1− 1

i 2

)
= 1

bpk +1c
,

for k > 2, are not summable. ■

Exercise 2.7.15. Let S := ⋃
n>1 Sn , where Sn := {π : N→ N bijective with π(k) = k for all k > n}.

Suppose X := (Xn)n>1 is a stochastic process such that for every π ∈S , X π := (Xπ(n))n>1 has the same
law as X . Define the exchangeable σ-algebra E :=⋂

n>1 En , where

En :=
{

{X ∈ A} : A ⊆RN measurable s.t. {X ∈ A} = {X π ∈ A} for all π ∈Sn

}
.

1. Show that for every f : RN→R bounded measurable,

E[ f (X ) | En] = 1

n!

∑
π∈Sn

f (X π), n > 1,

and that as n →∞, this sequence converges to E[ f (X ) | E ] a.s. and in L1(P).

2. Let the tail σ-algebra T := ⋂
n>1σ(Xk : k > n). Show that T ⊆ E and that for all f : RN → R

bounded measurable, E[ f (X ) | E ] = E[ f (X ) |T ].

3. Show that if A ∈ E , then there is B ∈T such that A = B up to a P-null set.

Hint. Show that P(A |T ) =1A.

4. Suppose X ∈ {0,1}N. Compute P(X1 = x1, . . . , Xk = xk | En) for all n,k > 1, x ∈ {0,1}k . Deduce that
given P :=P(X1 = 1 | E ), the Xn , n > 1, are i.i.d. Bernoulli(P ) r.v.

Solution of Exercise 2.7.15.

1. For every n > 1, the map

f(n) : x ∈RN 7→ 1

n!

∑
π∈Sn

f (xπ)
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is measurable, n-symmetric ( f(n)(xπ) = f(n)(x) for all π ∈Sn), and bounded (by ‖ f ‖∞). It follows
that f(n)(X ) is a En-measurable, integrable r.v. Moreover, for every h : RN→R n-symmetric and
bounded, we have

E[ f(n)(X )h(X )] = 1

n!

∑
π∈Sn

E[ f (X π)h(X )]

= 1

n!

∑
π∈Sn

E[ f (X π)h(X π)] (h n-symmetric)

= 1

n!

∑
π∈Sn

E[ f (X )h(X )] (X π (d)= X )

= E[ f (X )h(X )].

Hence E[ f (X ) | En] = f(n)(X ). Finally, by the tower property for En+1 ⊆ En , we have E[ f(n)(X ) |
En+1] = f(n+1)(X ), which means that f(n)(X ) = E[ f (X ) | En], n > 1, is a backwards martingale; it
converges a.s. and in L1(P) towards E[ f (X ) | E ].

2. Let B ∈T . Then B ∈ En , n > 1, since B ∈σ(Xk : k > n +1). Thus B ∈∩n>1En = E . We must show
that E[ f (X ) | E ] is T -measurable for f : RN→R bounded measurable. Let us first make the extra
assumption that f is continuous. Since f is then the limit of x 7→ f (x1, . . . , xk ,0, . . .) as k →∞, we
may also assume by the conditional dominated convergence theorem that f is a function of the
first k > 1 coordinates only. In this case, for all n > k +p, the number of permutations π ∈ Sn

with {π(1), . . . ,π(k)} ∩ {1, . . . , p} = ; is (n − k)!(n − p)!/(n − k − p)! ∼ n!, which implies that the
a.s. limit E[ f (X ) | E ] of f(n)(X ) is a σ(Xi : i > p)-measurable r.v. Since this is true for all p, we
conclude that this limit is in fact T -measurable.

Consider now the linear space H := { f : RN→ Rmeasurable ; E[ f (X ) | E ] is T -measurable}. By
the conditional monotone convergence theorem, this space is stable by non-increasing limits
of nonnegative functions, and further contains the indicator of any open set O ⊆ RN (precisely
because 1O is the non-decreasing limit as k → ∞ of the continuous functions fk : x ∈ RN 7→
1∧ (

k ·d(x,Oc )
)
, which by the previous point belong to H — here, d is a distance in RN which

metrizes the product topology). It follows from the monotone class theorem that H contains
all bounded measurable functions f : RN→R.

3. Let A ∈ E . Since A ∈ σ(X ), there is E ⊆ RN measurable with A = {X ∈ E }. Then f := 1E defines a
bounded measurable function RN→R, so

1A = f (X ) = E[ f (X ) | E ] = E[ f (X ) |T ] =P(A |T ),

by Question 1. Hence, for B := {P(A | T ) = 1} ∈T , we have A = B up to a P-null set.

4. Applying Question 1 with f :=1{x1}×···×{xk } yields

P(X1 = x1, . . . , Xk = xk | En) = 1

n!

∑
π∈Sn

1{Xπ(1)=x1,...,Xπ(k)=xk }.
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Let yk :=∑k
i=1 xi and Yn :=∑n

i=1 Xi . To construct a permutation π ∈Sn contributing to the sum
in the right-hand side, we must map injectively yk of its first k values to indexes i ∈ {1, . . . ,n}
among the Yn ones with Xi = 1 and the k − yk other to indexes i ∈ {1, . . . ,n} among the n −Yn

ones with Xi = 0, so

P(X1 = x1, . . . , Xk = xk | En) = yk !

(
Yn

yk

)
· (k − yk )!

(
n −Yn

k − yk

)
· (n −k)!

n!

∼
n→∞(Yn)yk · (n −Yn)k−yk ·n−k .

Hence, for P :=P(X1 = 1 | E ) = limn→∞ Yn
n a.s.,

P(X1 = x1, . . . , Xk = xk | E ) = P yk (1−P )k−yk , k > 1,

which means that given P , the Xn , n > 1, are i.i.d. Bernoulli(P ) r.v. ■

Exercise 2.7.16 (0-1 laws). Let (Ω,F , (Fn),P) be a filtred probability space and F∞ := ∨
n>0

Fn .

1. a) Show that for every X ∈ L1(Ω,F ,P),

E[X |Fn] −−−−→
n→∞ E[X |F∞], a.s. and in L1.

b) Deduce Lévy’s 0-1 law: for every A ∈F∞,

P(A |Fn) −−−−→
n→∞ 1A, a.s.

2. Let (Xn)n>1 be a sequence of i.i.d. real r.v.

a) Show Kolmogorov’s 0-1 law: the tail σ-algebra T :=⋂
n>1σ(Xk : k > n) is P-trivial:

∀A ∈T , P(A) ∈ {0,1}.

Hint. Use Lévy’s 0-1 law.

b) Use Kolmogorov’s 0-1 law and Exercise 2.7.15.3 to reprove Hewitt–Savage’s 0-1 law: the ex-
changeable σ-algebra E :=σ( f (X ) : f ∈ S), where S := { f : RN→R symmetric}, is P-trivial.

Solution of Exercise 2.7.16.

1. a) The process Xn := E[X | Fn], n > 0, defines a closed martingale, so Xn converges a.s. and
in L1(P) towards some r.v. X∞. It remains to show that X∞ = E[X | F∞]. The dominated
convergence theorem shows that {A ∈F : E[X1A] = E[X∞1A]} is a monotone class contain-
ing the π-system

⋃
k>0 Fk , and thus also F∞ by the monotone class theorem. Because X∞

is F∞-measurable, we conclude that X∞ = E[X |F∞].

b) In particular 1A ∈ L1(Ω,F ,P) for every A ∈F∞, so by Question 1.a),

P(A |Fn) = E[1A |Fn] −−−−→
n→∞ E[1A |F∞] =1A, a.s.
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2. a) Let Fn := σ(X1, . . . , Xn), n > 1. Then for every A ∈ T , we have A ∈ F∞ and also A ⊥⊥ Fn

because A ∈σ(Xk : k > n +1). By Lévy’s 0-1 law (Question 1.b)),

P(A) =P(A |Fn) −−−−→
n→∞ 1A, a.s.,

which means that P(A) ∈ {0,1}.

b) Note first that, in the notation of Exercise 2.7.15, the distribution of X π for any π ∈ S is
equal to that of X because the r.v. Xn , n > 1, are i.i.d. Next, Question 3 there also shows
that for every A ∈ E , there exists B ∈T such that A = B up to a P-null set, and thus P(A) =
P(B) ∈ {0,1} using Kolmogorov’s 0-1 law. Hence E is P-trivial. ■

2.8 Markov chains

Exercise 2.8.1. Let p ∈ (0,1), X1, X2, . . . i.i.d. Bernoulli(p) r.v., and Sn := X1 +·· ·+Xn . Justify whether
each of the following processes is a Markov chain or not; if it is, give the corresponding state space E
and the transition matrix Q.

1. Xn , n > 0;

2. Sn , n > 0;

3. Tn := S1 +·· ·+Sn , n > 0;

4. Vn := (Sn ,Tn), n > 0.

Solution of Exercise 2.8.1.

1. It is a Markov chain because by independence, the law of Xn+1 given (X0, . . . , Xn) is Bernoulli(p).
We have E = {0,1} and Q(x, y) = (1−p)1{y=0} +p1{y=1}.

2. It is a Markov chain. The law of Sn+1 given S0, . . . ,Sn is (Q(Sn , y))y∈E with E = Z+ and Q(x, y) =
p1{y=x+1} + (1−p)1{x=y}, x, y ∈ E .

3. It is not a Markov chain because

P(T4 = 4 | T3 = 3,T2 = 2,T1 = 1) = P(X1 = 1, X2 = X3 = X4 = 0)

P(X1 = 1, X2 = X3 = 0)
= 1−p,

whereas

P(T4 = 4 | T3 = 3,T2 = 1,T1 = 0) = P(X1 = 0, X2 = X3 = 1, X4 =−1)

P(X1 = 0, X2 = X3 = 1)
= 0.

4. It is a Markov chain. The law of Vn+1 given V0,V1, . . . ,Vn = (Sn ,Tn) is the law of (Sn + Xn+1,Tn +
Sn +Xn+1), i.e, (Q(Vn ,v))v∈E with E =Z2+ and

Q(x,y) = p1{s′=s+1,t ′=s+t+1} + (1−p)1{s′=s,t ′=s+t }, x := (s, t ), y := (s′, t ′) ∈ E . ■
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Exercise 2.8.2. Let p ∈ (0,1) and (Xn)n>0 be a Markov chain on E := {a,b,c} with transition matrix

Q :=
1−p p 0

1/2 0 1/2
0 0 1

.

1. Draw its transition graph.

2. Compute the probability P(Xn = b | X0 = a), n ∈N. Find its limit as n →∞.

Solution of Exercise 2.8.2.

1.

a b c
p

1−p

1/2

1/2

1

2. We have P(Xn = b | X0 = a) = Qn(a,b), that is the element at position (1,2) (first row, second
column) in Qn , which we can compute by reducing Q. But we may also observe that Qn =
Q ·Qn−1 for every n > 1 (that is just the Markov property at time 1). In particular, if we let
an :=P(Xn = b | X0 = a) and bn :=P(Xn = b | X0 = b), thenan = (1−p) an−1 +p bn−1,

bn = 1

2
an−1

(this can also be derived by reasoning on the transition graph). Thus (an)n>0 fulfills the linear,
homogeneous, second order, recurrence systeman − (1−p) an−1 − p

2
an−2 = 0, n > 2,

a0 = 0, a1 = p.

This is easily solved to

an = p

(
1−p +√

1+p2
)n −

(
1−p −√

1+p2
)n

2n
√

1+p2
.

We find that an → 0, which is not surprising by looking at the transition graph: the chain will
eventually reach the absorbing state c and stay there forever. ■

Exercise 2.8.3. Let f : E → F be a function between countable sets, and let (Xn)n>0 be a Markov
chain on E with transition matrix P .

1. Find a simple counterexample showing that Yn := f (Xn), n > 0, is not necessarily a Markov
chain on F .
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2. We suppose that whenever f (x) = f (y), then P (x, A) = P (y, A) for every A ⊆ E . Show that (Yn)n>0

is a Markov chain; express its transition matrix using P and f .

Solution of Exercise 2.8.3.

1. Consider for instance the symmetric random walk: Xn := Y1 + ·· · +Yn , n > 0, where Y1,Y2, . . .
are i.i.d. r.v. with P(Y1 = 1) = P(Y1 = −1) = 1/2. This is a Markov chain on E = Z with transition
matrix P (x, y) = (1{y=x+1} +1{y=x−1})/2. Then (X +

n )n>0 is not a Markov chain on F =Z+ because

P(X +
3 = 0 | X +

2 = 0, X +
1 = 0) =P(

(Y2,Y3) 6= (1,1)
)= 3/4,

whereas

P(X +
3 = 0 | X +

2 = 0, X +
1 = 1) =P(Y3 =−1) = 1/2.

2. Define [y] := {x ∈ E : f (x) = y}, y ∈ F, and, thanks to the assumption on P , P (y, ·) := P (x, ·) for
any x ∈ [y] (with the convention P (y, ·) ≡ 0 when [y] = ;). Let y0, . . . , yn , yn+1 ∈ F , and note
P :=P( · | Yn = yn , . . . ,Y0 = y0). Then

P (Yn+1 = yn+1) = ∑
xn∈[yn ],

xn+1∈[yn+1]

P (Xn+1 = xn+1 | Xn = xn)P (Xn = xn)

= P (yn , [yn+1])
∑

xn∈[yn ]
P (Xn = xn)

= P (yn , [yn+1]),

so (Yn)n>0 is a Markov chain on F with transition matrix Q(y, y ′) := P (y, [y ′]).

Remark. In particular the assumption holds if f is injective; then (Yn)n>0 is a Markov chain
on f (E) with transition matrix Q(y, y ′) := P ( f −1(y), f −1(y ′)). ■

Exercise 2.8.4. Let (Un)n>1 be i.i.d. uniform r.v. on (0,1) and X0 an independent r.v. on E .

1. Let f : E × (0,1) → E and define Xn+1 := f (Xn ,Un+1), n > 0. Show that (Xn)n>0 is a Markov chain
on E . Express its transition matrix in terms of f and U1.

2. Conversely, let P be a given transition matrix. Find a function f : E × (0,1) → E such that the
Markov chain (Xn)n>0 above has transition matrix P .

Solution of Exercise 2.8.4.

1. The law of Xn+1 given (X0, . . . , Xn) is the law of f (Xn ,Un+1), so it is a Markov chain on E with
transition matrix P (x, y) :=P( f (x,U1) = y).

2. We fix {y1, y2, . . .} an enumeration of E and define, for every (x,u) ∈ E ×(0,1), f (x,u) := yk , where
k ∈N is the unique integer such that

k−1∑
i=1

P (x, yi )6 u <
k∑

i=1
P (x, yi ).

(Such an integer always exists because P is a transition matrix.) This indeed defines f : E ×
(0,1) → E so that P( f (x,U1) = y) = P (x, y) for every x, y ∈ E . ■
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Exercise 2.8.5. Let E be a finite set of cardinal k > 2, and P be a transition matrix on E such that
α := inf{P (x, y) : x, y ∈ E } > 0 (note then that 0 <α6 1/2).

1. We fix y ∈ E and set pn(x) := Pn(x, y), x ∈ E .

a) Show that for every n > 0,{
inf pn+k >αsup pn + (1−α) inf pn ,

sup pn+k 6α inf pn + (1−α)sup pn .

Hint. Use that
∑

x∈X
Pk (·, x)+ ∑

x∈E\X
Pk (·, x) = 1 for X := {x ∈ E : pn(x) = sup pn}.

b) Deduce that dn := sup pn − inf pn converges to 0 as n →∞.

2. Conclude that there exists a probability distribution (p(y))y∈E on E such that

∀x ∈ E , p(y) = lim
n→∞Pn(x, y).

Solution of Exercise 2.8.5.

1. a) For infP =α,

∀(x, y) ∈ E 2, P2(x, y) = ∑
z∈E

P (x, z)P (z, y)>α
∑
z∈E

P (x, z) =α

(P is a transition matrix), we see that infP2 > α and by immediate induction, infPn > α

for all n ∈N. Also, note that X := {x ∈ E : pn(x) = sup pn} 6= ; because E is finite. Then, for
every x ′ ∈ E ,

pn+k (x ′) = ∑
x∈E

pn(x)Pk (x ′, x)

= sup pn
∑

x∈X
Pk (x ′, x)+ ∑

x∈E\X
pn(x)Pk (x ′, x)

> sup pn
∑

x∈X
Pk (x ′, x)+ inf pn

∑
x∈E\X

Pk (x ′, x)

= (sup pn − inf pn)
∑

x∈X
Pk (x ′, x)+ inf pn

>α(sup pn − inf pn)+ inf pn ,

which yields the first of the two desired inequalities. We proceed similarly for the second
(exchanging sup and inf).

b) Substracting both inequalities in 1.a), we find 0 6 dn+k 6 (1− 2α)dn , n > 0. Thus, since
1−2α> 0,

06 limsup
n→∞

dn 6 (1−2α) limsup
n→∞

dn ,

and using that 1−2α< 1, we deduce that dn converges to 0 as n →∞.
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2. Note that for every x ′ ∈ E ,

pn+1(x ′) = ∑
x∈E

P (x ′, x) pn(x)6 sup pn
∑
x∈E

P (x ′, x)︸ ︷︷ ︸
=1

= sup pn ,

so the nonnegative sequence (sup pn)n>0 is non-increasing. It has therefore a limit p(y) ∈ [0,1],
which by 1.b) is also the limit of (inf pn)n>0. Since inf pn 6 pn 6 sup pn , we have thus proved
that for every x, y ∈ E , pn(x) = Pn(x, y) converges to p(y) as n →∞. That (p(y))y∈E is indeed a
probability distribution follows by taking the limit in the finite sum∑

y∈E
Pn(x, y) = 1,

for some x ∈ E .

Conclusion. Any Markov chain (Xn)n>0 on a finite state space and whose transition matrix has
non-zero coefficients admits a limiting distribution which does not depend on the law of the initial
state X0. ■

Exercise 2.8.6. Let p, q ∈ [0,1] and (Xn)n>0 be a Markov chain on E := {a,b} with graph

a b .

1−p

p

q

1−q

1. For which values of p, q is (Xn)n>0 irreducible? Give the state classification.

2. Give the transition matrix of (Xn)n>0 and find the invariant probability measures.

3. Determine explicitly the law of Xn under Pa, for all n > 0.

4. Does (Xn)n>0 converge in law?

Solution of Exercise 2.8.6.

1. Clearly, the chain is irreducible if and only if p, q > 0. State a (resp. b) is transient if and only if
q = 0 and p > 0 (resp. p = 0 and q > 0).

2. The transition matrix is

Q :=
(
1−p p

q 1−q

)
.

A distribution µ on E is invariant (for Q) if and only if µQ =µ, that is{
µ(a)+µ(b) = 1,

p ·µ(a)−q ·µ(b) = 0.

When p +q > 0, this determines µ uniquely: µ(a) = q/(p +q) and µ(b) = p/(p +q).
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3. Let pn :=Pa(Xn = b) =Qn(a,b). Then p0 = 0 and, since 1−pn =Pa(Xn = a),

pn+1 = (Qn ·Q)(a,b) =Qn(a,a)Q(a,b)+Qn(ra,b)Q(b,b)

= (1−pn)p +pn(1−q)

= (1−p −q)pn +p.

Hence pn = p(1− (1−p −q)n)/(p +q), n > 0 if p +q > 0, and pn ≡ 0 if p +q = 0.

4. If p +q = 0, then Xn = X0 for all n > 0. If 0 < p +q < 2, then (Xn)n>0 converges in distribution to
the unique invariant law (Question 2). If p = q = 1, then X2n = X0 6= X1 = X2n+1: unless X1 ∼ X0

(i.e X0 has already the uniform distribution on E), there cannot be convergence ((Xn)n>0 is
periodic)! ■

Exercise 2.8.7. Let p ∈ [0,1], q := 1− p, and (Yk )k>1 be a sequence of i.i.d. r.v. with P(Y1 = 1) = p,
P(Y1 =−1) = q . Define (Xn)n>0 by X0 ∈Z+ and

Xn+1 := (Xn +Yn+1)+, n > 0,

where x+ := max(x,0).

1. Prove that (Xn)n>0 is a Markov chain. Give its state space and transition graph.

2. Is (Xn)n>0 irreducible? Give the state classification. (Discuss according to p.)

Hint. Compare (Xn)n>0 to the random walk X̃n := Y1 +·· ·+Yn , n > 0, on Z.

3. Determine all invariant measures of (Xn)n>0. Is there some invariant law?

Solution of Exercise 2.8.7.

1. Since Xn+1 is given as a (measurable) function of Xn and Yn+1, where (Yn)n>0 is i.i.d., the process
(Xn)n>0 is a Markov chain. It has values in E :=Z+ and transition matrix Q(x, y) :=P((x +Y1)+ =
y) = p1{y=x+1} +q1{y=(x−1)+}, x, y ∈ E .

0 1 2 . . .

q

p

q

p

q

p

q

2. Clearly, (Xn)n>0 is irreducible (that is, the above graph is strongly connected) if and only if p ∉
{0,1}. If p = 0, then Xn = (X0 −n)+ so the state 0 is recurrent while all other states are transient.
If p = 1, then Xn = X0 +n so all states are transient. For 0 < p < 1, that is when the chain is
irreducible, all states are of the same type as state 0 and we may suppose X0 = 0. Then Xn =
X̃n − infi6n X̃i , where by the law of large numbers, limn→∞ X̃n/n = E[Y1] = p −q , almost surely.
Thus, if q < p, then Xn → ∞ a.s. and 0 is transient, and if p < q , then Xn = 0 infinitely often
a.s. and 0 is recurrent. In the last case p = q = 1/2, we can also conclude that 0 is recurrent: we
know that the symmetric random walk (X̃n)n∈N on Z fulfills liminfn→∞ X̃n =−∞ a.s. (combine,
for instance, Exercise 2.4.12 and Exercise 2.7.11.5), thus Xn = 0 infinitely often.
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3. Let µ be a nontrivial measure on E with µ(x) <∞ for all x ∈ E . It is invariant for Q (i.e, µQ =µ) if
and only if {

q ·µ(1) = p ·µ(0),

q · (µ(k +1)−µ(k)) = p · (µ(k)−µ(k −1)), k > 1.

This implies p < 1 (otherwise µ≡ 0), and in this case (Xn)n>0 admits invariant measures which
are all of the form

µ(k) =µ(0)

(
1−

k−1∑
i=0

(
1− p

q

)(
p

q

)i
)

, k > 0.

Further, this can be normalized to a probability measure if and only if 0 < p < q , i.e, 0 < p < 1/2,
and the (unique) invariant law is then the geometric distribution with parameter 1−p/q :

µ(k) =
(
1− p

q

)(
p

q

)k

, k > 0.

Remark. In particular the chain has no invariant law when 1/2 6 p < 1, although it is irre-
ducible. The chain is null recurrent when p = 1/2. ■

Exercise 2.8.8. Let (Xn)n>0 be a Markov chain on a finite or countable state space E , and µ be a
probability distribution on E .

1. Show that if Xn converges in law to µ as n →∞, then µ is an invariant measure.

2. Show that if µ is an invariant measure, then µ(x) = 0 for all transient state x ∈ E .

Solution of Exercise 2.8.8. We let Q denote the transition matrix of (Xn)n>0.

1. Let µn , n > 0, be the law of Xn , so that µn(x) → µ(x) as n →∞, for all x ∈ E . For every n > 0 we
have µn+1 =µnQ, that is

µn+1(x) = ∑
y∈E

µn(y)Q(y, x), x ∈ E . (?)

By Fatou’s lemma µ> µQ, but we can also apply it in “1−µn+1 = µn(1−Q)” to obtain the con-
verse inequality µ6µQ. Hence µ is an invariant measure.

Remark. We could also apply Portmanteau’s theorem since (?) is nothing else than E[Q(Xn , x)],
where Q(·, x) is a continuous bounded function on E .

2. Suppose that µ is an invariant probability measure. Then µ=µQn for every n > 0, so

µ(x) = ∑
y∈E

µ(y)Qn(y, x), x ∈ E .

If x is transient, then we know that Qn(y, x) → 0 as n → ∞ for all y ∈ E , and the dominated
convergence theorem (or Fatou’s lemma!) therefore yields µ(x) = 0. ■
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Exercise 2.8.9. Suppose that we shuffle a traditional deck of 52 cards in the following way: at each
time n ∈N, we choose two cards uniformly at random and exchange them.

1. Model this process by a Markov chain. (Give its state space and transition matrix.)

2. Show that this chain is irreducible and find its unique invariant distribution.

Solution of Exercise 2.8.9.

1. We can see this process as a Markov chain (Xn)n>0 on the state space E :=S52 of permutations
of {1, . . . ,52}. The transition matrix is Q(σ,σ′) := 1{σ∼σ′}/

(52
2

)
, where σ ∼ σ′ means that σ′σ−1 is

one of the
(52

2

)
transpositions in E .

2. Since the set of transpositions span the symmetric group, the chain is irreducible (eventually
the chain will move from any deck configuration to any other with positive probability). It has
therefore at most one invariant law. But we notice that Q is a symmetric matrix, so nonzero con-
stant measures are trivially reversible and in particular invariant. We conclude that the uniform
distribution on E is the unique invariant law.

Remark. The chain is irreducible, positive recurrent, but 2-periodic: it always moves from an even
permutation to an odd one and vice versa, i.e, sign(Xn) = (−1)n sign(X0), where sign: S52 → {−1,1} is
the signature morphism. However, if we allow at each step that the two uniformly chosen cards can
be equal, the chain becomes aperiodic (since then Q(σ,σ) > 0, for all σ ∈ E), and we then have the
convergence of Xn toward the uniform distribution as n →∞ (whatever the law of X0 be). ■

Exercise 2.8.10. Let (Xn)n>0 be a Markov chain on a finite or countable state space E . Recall that
Hx := inf{n > 1: Xn = x}, x ∈ E , and, when x is recurrent, that

νx(y) := Ex

[
Hx−1∑
n=0

1{Xn=y}

]
, y ∈ E

(the mean number of visits of y before returning to x), defines an invariant measure.

1. We suppose in this question that (Xn)n>0 is the symmetric random walk on E = Z. Show that
ν0 ≡ 1 (the mean number of visits of y ∈Z before returning to 0 is 1).

2. We suppose in this question that (Xn)n>0 is irreducible and positive recurrent. Show that for
every x, y ∈ E ,

νx(y) = Ex[Hx]

Ey [Hy ]
.

Solution of Exercise 2.8.10.

1. Recall that the symmetric random walk on Z is a recurrent Markov chain with transition matrix
Q(x, y) := (1{y=x−1} +1{y=x+1})/2. Thus, ν0 is an invariant measure (νQ = ν) and therefore fulfills

ν0(k) = 1

2

(
ν0(k −1)+ν0(k +1)

)
, k ∈Z,
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that is to say,

ν0(k +1)−ν0(k) = ν0(k)−ν0(k −1), k ∈Z,

with ν0(0) = 1 (by definition of H0). We get that ν0(k) = 1+ kC , k ∈ Z, for some constant C .
Since ν0 is a positive measure, we must have C = 0. Hence ν0 ≡ 1.

2. Since (Xn)n>0 is irreducible and positive recurrent, it admits a unique invariant probability mea-
sure given by

µ(y) = 1

Ey [Hy ]
, y ∈ E ,

and any other invariant measure must be proportional toµ. Consequently, for every x ∈ E , there
exists C > 0 such that νx =C µ, and thus, for every y ∈ E ,

Ex[Hx]

Ey [Hy ]
= µ(y)

µ(x)
= νx(y)

νx(x)
= νx(y),

as stated. ■

Exercise 2.8.11. Let (Xn)n>0 be a Markov chain on a finite or countable state space E . Recall that
Hx := inf{n > 1: Xn = x}, x ∈ E , and, when x is recurrent, that

νx(y) := Ex

[
Hx−1∑
n=0

1{Xn=y}

]
, y ∈ E

(the mean number of visits of y before returning to x), defines an invariant measure.

1. We suppose in this question that (Xn)n>0 is the symmetric random walk on E = Z. Show that
ν0 ≡ 1 (the mean number of visits of y ∈Z before returning to 0 is 1).

2. We suppose in this question that (Xn)n>0 is irreducible and positive recurrent. Show that for
every x, y ∈ E ,

νx(y) = Ex[Hx]

Ey [Hy ]
.

Solution of Exercise 2.8.11.

1. The symmetric random walk on Z, with matrix Q(x, y) := (1{y=x−1} +1{y=x+1})/2, x, y ∈ Z, is (as
we know) recurrent, so ν0 is invariant (ν0 = ν0Q) and thus fulfills

ν0(k) = (ν0(k −1)+ν0(k +1))/2, k ∈Z,

that is, ν0(k +1)−ν0(k) = ν0(k)−ν0(k −1), k ∈Z,

with ν0(0) = 1 (by definition of H0). We get that ν0(k) = 1+C k, k ∈ Z, for some constant C .
Since ν0 is a positive measure, we must have C = 0. Hence ν0 ≡ 1.
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2. Being positive recurrent, (Xn)n>0 admits µ(y) := 1/Ey [Hy ], y ∈ E , as unique stationary law, and
any other invariant measure differs by a multiplicative constant. Hence

Ex[Hx]

Ey [Hy ]
= µ(y)

µ(x)
= νx(y)

νx(x)
= νx(y), x, y ∈ E .

■

Exercise 2.8.12. Let (Xn)n>0 be a Markov chain on E :=Zwith transition matrix

Q(i , j ) :=


pi , if j+ = i++1 or j− = i−+1,

qi , if j+ = i+−1 or j− = i−−1,

0, otherwise,

where pi ∈ (0,1), qi := 1−pi , for every i ∈ E .

1. Check that (Xn)n>0 is irreducible. (Sketch the transition graph.)

2. We suppose that

limsup
|k|→∞

pk < 1

2
.

Show that (Xn)n>0 is (positive) recurrent.

Hint. Apply Foster–Lyapunov’s criterion.

Solution of Exercise 2.8.12.

1. It is clear that Q| j−i |(i , j ) > 0 for all i , j ∈ E :

. . . −1 0 1 . . .

q−2 q−1

p−1 p0 p0 p1

q2q1

2. Let f (i ) := |i |, i ∈ E . Note that, for i 6= 0,∑
j∈E

Q(i , j ) f ( j ) =Q(i , i −1)|i −1|+Q(i , i +1)|i +1| = f (i )+pi −qi . (?)

By assumption, there exists k > 0 such that, for every i ∉ F := {i ∈ E : |i |6 k} (which is a finite
subset of E), we have pi 6 1/2, so (?) shows that Q f (i ) 6 f (i ), i.e, f : E →R+ is superharmonic
on E \ F . Since further {x ∈ E : f (x) < M } is finite for every M > 0, we conclude by Foster’s crite-
rion that (Xn)n>0 is recurrent.

Remark. Even better, the assumption says that sup|i |>k pi < 1/2 for k large enough, so we have ε > 0,
f : E →R+, and F ⊂ E finite (as before) such that, thanks to (?),

(i) ∀i ∈ E \ F, Q f (i )6 f (i )−ε; (ii) ∀i ∈ F, Q f (i ) <∞.
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By another criterion of Foster, the irreducible chain (Xn)n>0 is positive recurrent. Indeed, for HF :=
inf{n > 1: Xn ∈ F }, Yn := f (Xn)1{HF>n}, n > 0, and i ∉ F , we have

Ei [Yn+1 | X0, . . . , Xn]6Q f (Xn)1{HF>n} 6 Yn −ε1{HF>n}

(using {HF > n +1} ⊆ {HF > n} for the first inequality, and (i) for the second). Since Ei [Yn] > 0, it follows
by taking expectations above that Pi (HF > n), n > 0, is summable; more precisely Ei [HF ] 6 Ei [Y0]/ε =
f (i )/ε. Now for i ∈ F , the Markov property at first step yields

Ei [HF ] = 1+Ei
[
(HF ◦θ1)1{X1∉F }

]
6 1+Q f (i )/ε,

which is bounded, by (ii) and finiteness of F . The positive recurrence follows. ■

Exercise 2.8.13. Let (Xn)n>0 be an irreducible Markov chain on E . We suppose that there exist a
finite subset F ⊆ E and a function f : E →R such that

(i) ∀x ∈ F, f (x) > 0; (ii) infx∈E f (x) = 0; (iii) ∀x ∈ E \ F, Ex[ f (X1)]6 f (x).

Show that (Xn)n>0 is transient.

Hint. Introduce the hitting time TF := inf{n > 0: Xn ∈ F }...

Solution of Exercise 2.8.13. By (ii), f is nonnegative. By (i) and finiteness of F , we haveα := infx∈F f (x) >
0. Fix x ∈ E arbitrary. By (iii), we also know that the process Yn := f (Xn∧TF ), n > 0, is a nonnegative
Px-supermartingale (constant if x ∈ F ); in particular,

∀n > 0, Ex[Yn]6 Ex[Y0] = f (x).

Now, suppose that (Xn)n>0 is recurrent. In this case Px(TF <∞) = 1, XTF ∈ F , and thus

lim
n→∞Yn = f (XTF )>α.

Fatou’s lemma then yields f (x)>α, for any x ∈ E . Since this contradicts (ii), we conclude that (Xn)n>0

must be transient. ■

Exercise 2.8.14. Let Q be a symmetric, irreducible, aperiodic transition matrix on E , and µ be a
probability measure on E such that µ(x) > 0 for all x ∈ E . We set

P (x, y) :=Q(x, y) min

(
1,
µ(y)

µ(x)

)
, for x 6= y ∈ E .

1. Check that P extends to a transition matrix which is also irreducible and aperiodic.

We consider a Markov chain (Xn)n>0 on E with transition matrix P .

2. Show that µ is an invariant measure for P , and that (Xn)n>0 is positive recurrent.

3. Let Un , n ∈ N, be a r.v. independent of (Xk )k>0, with P(Un = i ) = 1/n, 0 6 i < n. Show that for
every x ∈ E , ∑

x∈E

∣∣P(XUn = x)−µ(x)
∣∣−−−−→

n→∞ 0.
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Solution of Exercise 2.8.14.

1. Because Q is a transition matrix we have
∑

y 6=x P (x, y) 6 1 for all x ∈ E , so P extends to a transi-
tion matrix by setting P (x, x) appropriately. Further, since µ(x) > 0 for every x ∈ E , we can see
that

{n > 0: Qn(x, y) > 0} ⊆ {n > 0: Pn(x, y) > 0}. x, y ∈ E .

Since Q is irreducible and aperiodic, so is P .

2. We check that µ is reversible for P : for x 6= y ∈ E , using that Q is symmetric,

µ(x)P (x, y) =Q(x, y) min
(
µ(x),µ(y)

)=µ(y)P (y, x)

It follows that µ is an invariant measure for P . Since P is irreducible, µ is the unique stationary
distribution and (Xn)n>0 is positive recurrent.

3. On the one hand, since (Xn)n>0 is an irreducible, recurrent and aperiodic Markov chain with
invariant probability measure µ, we have the convergence to equilibrium:

an := ∑
x∈E

∣∣P(Xn = x)−µ(x)
∣∣−−−−→

n→∞ 0.

On the other hand, by independence between Un and (Xk )k>0,

bn(x) :=P(XUn = x) = 1

n

n−1∑
k=0

P(Xk = x), n ∈N.

Therefore

∑
x∈E

∣∣P(XUn = x)−µ(x)
∣∣6 1

n

∑
x∈E

n−1∑
k=0

∣∣P(Xk = x)−µ(x)
∣∣ (∆-inequality)

= 1

n

n−1∑
k=0

ak (Fubini)

−−−−→
n→∞ 0. (Cesàro)

Remark. Without assumption of aperiodicity, we still have bn(x) −−−−→
n→∞ µ(x) for every x ∈ E :

indeed, by positive recurrence,

1

n

n−1∑
k=0

1{Xk=x} −−−−→
n→∞ µ(x), a.s.,

and the dominated convergence theorem allows us to take the expectations. ■

Exercise 2.8.15. We consider the simple random walks of the knight and the king on a classical
chessboard, E := {a, . . . ,h}× {1, . . . ,8}. Authorized moves are recalled below.
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8 zzZzzZzzZzzZ
7 zZzzZzzZzzZz
6 zzZzzZzzZ1TKzZ
5 zZzzZzzZzzZz
4 zzZzzZzzZzzZ
3 zZz2–UnzzZzzZz
2 zzZzzZzzZzzZ
1 zZzzZzzZzzZz

a b c d e f g h

1. Starting in a8, what is the expected time for the king to return to a8? In the meantime, how many
visits in the four squares {d4,e4,e5,d5} will he have performed?

Hint. Use Exercise 2.8.11.2.

2. At which frequency does the knight visit square g6, as time tends to infinity?

Solution of Exercise 2.8.15. It is plain that both random walks are irreducible. Since the state space
is finite, they are positive recurrent. Further, the (unique) invariant distribution of a simple random
walk on a finite graph is reversible; in our setting, it is given by

1

Ex[Hx]
=:µ(x) = card Ax∑

y∈E
card Ay

, x ∈ E ,

where the card Ay , giving the number of squares accessible in a single move from y ∈ E by the king
(respectively, the knight), are recorded below.

8 3 5 5 5 5 5 5 3
7 5 8 8 8 8 8 8 5
6 5 8 8 8 8 8 8 5
5 5 8 8 8 8 8 8 5
4 5 8 8 8 8 8 8 5
3 5 8 8 8 8 8 8 5
2 5 8 8 8 8 8 8 5
1 3 5 5 5 5 5 5 3

a b c d e f g h

(a) Accessible squares for the king.

8 2 3 4 4 4 4 3 2
7 3 4 6 6 6 6 4 3
6 4 6 8 8 8 8 6 4
5 4 6 8 8 8 8 6 4
4 4 6 8 8 8 8 6 4
3 4 6 8 8 8 8 6 4
2 3 4 6 6 6 6 4 3
1 2 3 4 4 4 4 3 2

a b c d e f g h

(b) Accessible squares for the knight.

1. For the king, using the table (a) we find µ(a8) = 3/420 = 1/140. The king thus returns to its
starting point in Ea8[Ha8] = 1/µ(a8) = 140 time units on average. Using the notations of Exer-
cise 2.8.11, the average time spent on the four central squares between two visits of a8 is

νa8({d4,e4,e5,d5}) = 1

µ(a8)

(
µ(d4)+µ(e4)+µ(e5)+µ(d5)

)= 140

(
2

105
×4

)
= 32

3
.
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2. For the knight, using the table (b) we find µ(g6) = 6/336 = 1/56. By the ergodic theorem, this is
also the a.s. asymptotic frequency of visits to g6. ■

Exercise 2.8.16. Let (Xn)n>0 be a Markov chain on a finite state space E , with transition matrix Q.
We call a state x ∈ E absorbing, and we write x ∈ A, if Q(x, x) = 1. We suppose r := ]A > 1 and A
accessible: ∀x ∈ E , ∃n ∈N, Qn(x, A) > 0.

1. Is (Xn)n>0 irreducible?

2. Let Ir denote the r × r identity matrix. Check that we may write Q in the form

Q :=
(

P T

0 Ir

)
.

3. Let HA := inf{n > 0: Xn ∈ A}.

a) Show that for all i , j ∉ A, P n(i , j )6Pi (HA > n).

b) Show that there exists M > 1 such that

p := sup
i∉A

Pi (HA > M) < 1.

Hint. You can take M := supi∉A mi , where mi := inf{n > 0: Pi (Xn ∈ A) > 0}.

c) Deduce that Pi (HA =∞) = 0 and P n(i , j ) → 0 for all i , j ∉ A.

Hint. Check that supi∉A Pi (HA > Mn)6 pn (use the Markov property).

4. Let s := ]E − r . Show that Is −P is invertible and that, for F := (Is −P )−1,

lim
n→∞Qn =

(
0 F T

0 Ir

)
.

Hint. Prove that 1 is not an eigenvalue of P .

5. a) Check that for all i , j ∉ A,

F (i , j ) = Ei

[ ∞∑
n=0

1{Xn= j }

]
.

b) Show that
∑

j∉A F (i , j ) = Ei [HA] for all i ∉ A.

c) Show that F T (i , j ) =Pi (XHA = j ) for all i ∉ A and j ∈ A.

Solution of Exercise 2.8.16.

1. No (unless r = ]E = 1): from i ∈ A, no other state j 6= i is accessible.

2. We order the absorbing states, so that Q is triangular by blocks with the bottom-right block Ir =
Q|A×A corresponding to the transition probabilities of the absorbing states.
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3. a) Since (Xn)n>0 cannot escape A and j ∉ A, {Xn = j } ⊆ {Xn ∉ A} = {HA > n}, so P n(i , j ) 6
Pi (Xn = j )6Pi (HA > n).

b) With M as given, the chain can reach A from any state i ∉ A in at most M steps. Indeed:

Pi (HA 6 M)>Pi (HA 6mi )>Pi (Xmi ∈ A) > 0.

Because E \ A is finite, it follows that p < 1.

c) Let n > 2 and i ∉ A. By the Markov property at time M ,

Pi (HA > Mn) =Pi (XMn ∉ A)

= Ei
[
Pi (XM ∉ A, XM+(n−1)M ∉ A |FM )

]
= Ei

[
1XM∉APXM (X(n−1)M ∉ A)

]
6 pPi (HA > M(n −1)).

Hence Pi (HA > Mn) 6 pn for all i ∉ A. Letting n → ∞, we get Pi (HA = ∞) = 0 and also,
by Question 1, P n(i , j ) → 0 for all j ∉ A.

4. Let x ∈ Rs with P x = x. Then x = P n x → 0 as n → ∞, by Question 3.c). Hence 1 is not an
eigenvalue of P , i.e, Is −P is invertible. The stated limit for Qn then follows from the facts that
F := (Is −P )−1 =∑∞

n=0 P n and (by immediate induction on n)

Qn =
(

P n (Is +P +·· ·+P n−1)T

0 Ir

)
.

5. a) For all i , j ∉ A, we have by Fubini–Tonelli’s theorem,

F (i , j ) =
∞∑

n=0
P n(i , j ) =

∞∑
n=0

Pi (Xn = j ) = Ei

[ ∞∑
n=0

1{Xn= j }

]
.

b) For all i ∉ A,∑
j∉A

F (i , j ) =
∞∑

n=0

∑
j∉A

Pi (Xn = j ) =
∞∑

n=0
Pi (Xn ∉ A) =

∞∑
n=0

Pi (HA > n) = Ei [HA].

c) Let i ∈ A and j ∉ A. We see from the simple Markov property at time n > 0 that

Pi (HA = n +1, Xn+1 = j ) =Pi (Xn ∉ A, Xn+1 = j ) = ∑
k∉A

Pi (Xn = k)Pk (X1 = j ).

Therefore F T (i , j ) equals

∑
k∉A

F (i ,k)T (k, j ) =
∞∑

n=0

∑
k∉A

Pi (Xn = k)Pk (X1 = j )

=
∞∑

n=0
Pi (HA = n +1, Xn+1 = j )

=Pi (XHA = j ). ■
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Exercise 2.8.17. Consider the Markov chain on E := {1,2,3,4,5,6} with transition matrix:

Q :=



0 1 0 0 0 0
0.4 0.6 0 0 0 0
0.3 0 0.4 0.2 0.1 0
0 0 0 0.3 0.7 0
0 0 0 0.5 0 0.5
0 0 0 0.8 0 0.2

.

1. Draw the transition graph.

2. Give the recurrence/transience classes.

3. Compute P3(Xn ∈ {4,5,6} eventually).

Hint. Use the Markov property.

Solution of Exercise 2.8.17.

1. The transition graph is

3 1 2

5

4

6 .
1

0.4

0.3

0.10.5

0.8 0.2

0.70.5

0.2

0.3

0.4 0.6

2. We easily see that the recurrence classes are {1,2} and {4,5,6}, and that 3 is transient.

3. We have P3(Xn ∈ {4,5,6} eventually) = 1−P3(Xn = 1 eventually) and, by the Markov property at
time 1,

p :=P3(Xn = 1 eventually) =P3(X1 = 1)+P3(X1 = 3, Xn = 1 eventually)

= 0.3+E3
[
1{X1=3}PX1 (Xn = 1 eventually)

]
= 0.3+0.4 p,

which solves to p = 0.3
1−0.4 = 0.5. Hence P3(Xn ∈ {4,5,6} eventually) = 1−p = 0.5. ■

Exercise 2.8.18. Let (Yn)n>0 be the symmetric random walk on Z, that is Yn = Y0 +∑n
i=1ξi , n > 0,

with ξ, i > 1, i.i.d. uniform ±1 r.v. independent of Y0 ∈ L1. Let H−1 := inf{n > 0: Yn =−1}.
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1. Let k ∈Z+.

a) What is P0(H−1 = 2k)?

b) Compute P0(Y2k+1 =−1).

Hint. Under P0, {Y2k+1 =−1} means that exactly k of the ξ1, . . . ,ξ2k+1 equal +1...

c) Let (xi ) ∈ {±1}2k+1 with x1 +·· ·+ x2k+1 =−1. Check that there is one and only one 1 6 r 6
2k +1 such that, if we set x̃ := (xr+1, . . . , x2k+1, x1, . . . , xr ), then

∀ j 6 2k,
j∑

i=1
x̃i > 0.

Suggestion. Do a drawing.

d) Deduce that P0(H−1 = 2k +1) = 1
2k+1 P0(Y2k+1 =−1).

2. Give an equivalent of P0(H−1 = 2k +1) as k →∞.

Hint. Use Stirling’s formula.

3. Conclude that E0[H−1] =∞.

Solution of Exercise 2.8.18.

1. a) From 0, the chain can only reach even states at even times, so P0(H−1 = 2k) = 0.

b) Under P0, {Y2k+1 =−1} means that among ξ1, . . . ,ξ2k+1, exactly k variables equal +1, while
the k +1 other equal −1. It follows that P0(Y2k+1 =−1) is the probability of k successes of a
Binomial(2k +1, 1

2 ) r.v., so

P0(Y2k+1 =−1) = 2−(2k+1)

(
2k +1

k

)
.

c) Let r ∈ {1, . . . ,2k + 1} be the first index realizing the minimum in the sequence of partial
sums of x1 +·· ·+x2k+1:

0

r0

=⇒ 0

0

It is clear from the figure that the 2k first partial sums of (xr+1, . . . , x2k+1, x1, . . . , xr ) are all
nonnegative. Consider now any other shift (x j+1, . . . , x2k+1, x1, . . . , x j ) of x. If j < r , then
x j+1 +·· ·+xr < 0 by definition of r as being the first index realizing the minimum. If j > r ,

then x j+1+·· ·+x2k+1+x1 · · ·+xr =−1−∑ j
i=r+1ξi < 0 because

∑ j
i=1ξi >

∑r
i=1ξi . In any case,

at least one partial sum is negative, which proves the uniqueness of r as above.
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d) Let x ∈ {±1}2k+1 and x̃ as above. The family (ξi )i>1 is i.i.d., so

P0
(
(ξ1, . . . ,ξ2k+1) = x

)=P0
(
(ξ1, . . . ,ξ2k+1) = x̃

)
.

Summing over all possible x, we obtain P0(Y2k+1 =−1) for the left-hand side. For the right-
hand side, we note that in the union

⋃
x{(ξ1, . . . ,ξ2k+1) = x̃} = {H−1 = 2k +1}, each event is

repeated exactly (2k +1) times, so we get (2k +1)P0(H−1 = 2k +1). Hence the result.

2. By Stirling’s formula,

P0(H−1 = 2k +1) = 2−(2k+1)

2k +1

(
2k +1

k

)
= 2−(2k+1)

k +1
· (2k)!

k !2
∼ 2−(��2k+1)

k

(
�2�k

�e

)2k p
�A4πk(

�k

�e

)2k
�A2πk

,

that is

P0(H−1 = 2k +1) ∼ 1

2k
p
πk

, k →∞.

3. We deduce by comparison with a Riemann sum that

n∑
k=0

(2k +1)P0(H−1 = 2k +1) ∼ 2
p

np
π

, n →∞,

so E0[H−1] =∞. (Actually, the argument even shows that E0[
p

H−1] =∞.) ■

Exercise 2.8.19. Using Exercise 2.7.11.5, give a simple proof that every irreducible, centered, finite-
range random walk on Z is recurrent.

Solution of Exercise 2.8.19. Such a random walk can be written Xn = X0 +∑n
i=1ξi , n > 0, where the

variables ξi , i > 1, are i.i.d., independent of X0, with P(|ξ1| > 2K ) = 0 for some K > 0 (finite range) and
E[ξ1] = 0 (centered). The process (Xn)n>0 is clearly a Markov chain with transition matrix Q(x, y) :=
P(ξ1 = y − x), x, y ∈ Z, but it is also a martingale whose increments are independent and dominated
in L1, so we may apply Exercise 2.7.11.5 together with Kolmogorov’s 0-1 law. Then, either Xn converges
a.s. to some r.v. X∞ ∈ Z or oscillates a.s. In the first case, the law of X∞ is an invariant probability
measure4 for the irreducible Markov chain (Xn)n>0, which is then recurrent. In the second case, the
set {−K ,−K +1, . . . ,K } is visited infinitely often a.s., which also entails by irreducibility that (Xn)n>0 is
recurrent. ■

4Indeed, passing the equality P(Xn+1 = x) = E[P(Xn+1 = x | Xn)] = E[Q(Xn , x)] to the limit as n →∞ yields (by domi-
nated convergence) µ(x) :=P(X∞ = x) = E[Q(X∞, x)] for all x ∈Z, that is µ=µQ.
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3
COMBINATORICS OF INTEGER PARTITIONS

The following exercises are due to Jehanne Dousse.

3.1 Generating functionology

Exercise 3.1.1. List all partitions of 6.

Solution of Exercise 3.1.1. There are 11 partitions of 6:

6 = 6

= 5+1

= 4+2

= 4+1+1

= 3+3

= 3+2+1

= 3+1+1+1

= 2+2+2

= 2+2+1+1

= 2+1+1+1+1

= 1+1+1+1+1+1 . ■

Exercise 3.1.2.

1. List all partitions of 6 into even parts, and those in which each part occurs an even number of
times. What do you notice?

2. Explain why, for n odd,

p(n | even parts) = p(n | each part occurs an even number of times) = 0.

3. Show that for all n ∈N,

p(n | even parts) = p(n | each part occurs an even number of times).
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Solution of Exercise 3.1.2.

1. We notice that there are 3 partitions of 6 into even parts (highlighted in green above), and also 3
partitions of 6 in which each part occurs an even number of times (highlighted in red).

2. A partition with only even parts must sum to an even number. Likewise, a partition in which
each part occurs an even number of times must sum to an even number.

3. Clearly, the map (2k1 +·· ·+2kr ) 7→ (k1 +k1)+·· ·+ (kr +kr ) forms a bijection between the set of
partitions of n into even parts and the set of partitions of n in which each part occurs an even
number of times.

Remark. The generating function for partitions into even parts is

∑
n>0

p(n | even parts) qn = ∏
k even

(1+qk +q2k +·· · ) = ∏
k even

1

1−qk
,

while the generating function for partitions in which each part occurs an even number of times
is

∑
n>0

p(n | each part occurs an even number of times) qn =
∞∏

k=1
(1+q2k +q4k +·· · )

=
∞∏

k=1

1

1−q2k
.

(They are the same!) ■

Exercise 3.1.3.

1. What is the generating function for partitions into distinct parts equal to 2, 5 or 7?

2. What is the generating function for partitions into parts equal to 2, 5 or 7, such that each part
occurs at most d times (d ∈N)?

3. What is the generating function for partitions into parts equal to 2, 5 or 7?

Solution of Exercise 3.1.3.

1. The generating function for the partitions of n into distinct parts equal to 2, 5 or 7 is∑
n>0

Q(n | parts = 2,5,7) qn = ∑
i , j ,k∈{0,1}

q2i+5 j+7k

= (1+q2) · (1+q5) · (1+q7)

= 1+q2 +q5 +2q7 +q9 +q12 +q14.
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2. The generating function for the partitions of n into distinct parts equal to 2, 5, or 7 and where
each part occurs at most d ∈N times is∑

n>0
p(n | parts = 2,5,7; each part occurs 6 d times) qn

= ∑
i , j ,k∈{0,...,d}

q2i+5 j+7k

= (1+q2 +q4 +·· ·+q2d ) · (1+q5 +q10 +·· ·+q5d ) · (1+q7 +q14 +·· ·+q7d )

= 1−q2(d+1)

1−q2
· 1−q5(d+1)

1−q5
· 1−q7(d+1)

1−q7
.

3. The generating function for the partitions of n into parts equal to 2, 5, or 7 is∑
n>0

p(n | parts = 2,5,7) qn = ∑
i , j ,k>0

q2i+5 j+7k

=
(∑

i>0
q2i

)
·
( ∑

j>0
q5 j

)
·
( ∑

k>0
q7k

)

= 1

1−q2
· 1

1−q5
· 1

1−q7
. ■

Exercise 3.1.4. What generating function would you compute and what coefficient would you ex-
tract if you wanted to know the number of ways of changing a 100 CHF bill into coins of 1, 2 and 5
CHF and bills of 10 and 20 CHF?

Solution of Exercise 3.1.4. We want the coefficient in q100 of the generating function for the partitions
of n into parts equal to 1,2,5,10,20, that is

[q100]
1

1−q
· 1

1−q2
· 1

1−q5
· 1

1−q10
· 1

1−q20
(= 4111).

■

Exercise 3.1.5. What is the generating function for partitions into parts6 2k (k ∈N) where odd parts
cannot repeat?

Solution of Exercise 3.1.5.

∞∑
n=0

p(n | parts 6 2k; odd parts cannot repeat) qn = (1+q)(1+q3) · · · (1+q2k−1)

(1−q2)(1−q4) · · · (1−q2k )

= (−q ; q2)k

(q2; q2)k
. ■

Exercise 3.1.6. Give the generating function for(
n2 +4n +5

n!

)
n>0

.
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Solution of Exercise 3.1.6.

∑
n>0

n2 +4n +5

n!
qn = ∑

n>0

n(n −1)+5n +5

n!
qn

= q2
∑

n>2

qn−2

(n −2)!
+5q

∑
n>1

qn−1

(n −1)!
+5

∑
n>0

qn

n!

= (q2 +5q +5)eq . ■

Exercise 3.1.7.

1. Show that if f is the generating function for (an)n>0, then f
1−X is the generating function for

(
∑n

j=0 a j )n>0.

2. Give the generating function for (
n∑

j=0
j

)
n>0

.

3. Show that if f is the generating function for (an)n>0, then f k is the generating function for( ∑
n1+···+nk=n

an1 · · ·ank

)
n>0

.

4. Recover the classical formula
n∑

j=0
j = n(n +1)

2
.

Solution of Exercise 3.1.7.

1. Two methods. By applying the product formula:

f (X )

1−X
=

( ∞∑
n=0

an X n
)( ∞∑

n=0
X n

)
=

∞∑
n=0

(
n∑

k=0
ak

)
X n ,

or by inverting sums:

∞∑
n=0

(
n∑

k=0
ak

)
X n = ∑

06k6n
ak X n =

∞∑
k=0

ak

( ∞∑
n=k

X n

)
=

∞∑
k=0

ak
X k

1−X
= f (X )

1−X
.

2. We know that (1−X )−1 is the generating function for the sequence n 7→ 1. Applying twice Ques-
tion 1, we deduce that (1−X )−2 is the generating function for

n 7→
n∑

j=0
1 = n +1,
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and then that (1−X )−3 is the generating function for

n 7→
n∑

j=0
( j +1) = (n +1)+

n∑
j=0

j .

By difference, (1−X )−3 − (1−X )−2 = X (1−X )−3 is the generating function for(
n∑

j=0
j

)
n>0

.

Remark. We can conclude with just one application of Question 1 to

X

(1−X )2
= X ·

(
1

1−X

)′
=

∞∑
n=0

nX n .

3. Either by induction on k, or directly:

∞∑
n=0

( ∑
n1+···+nk=n

an1 · · ·ank

)
X n =

∞∑
n=0

∑
n1+···+nk=n

(an1 X n1 ) · · · (ank X nk )

= ∑
n1,...,nk>0

(an1 X n1 ) · · · (ank X nk )

=
( ∞∑

n=0
an X n

)k

= f (X )k .

4. On the one hand,

X

(1−X )3
=

∞∑
n=0

(
n∑

j=0
j

)
X n .

On the other hand, using Question 3,

X

(1−X )3
=

∞∑
n=0

( ∑
n1+n2+n3=n

1

)
︸ ︷︷ ︸

=(n+2
2 )

X n+1 =
∞∑

n=0

n(n +1)

2
X n . (?)

We conclude by identifying the terms in X n .

Remark. We can also obtain (?) by derivation:

X

(1−X )3
= X · 1

2

(
1

1−X

)′′
=

∞∑
n=0

n(n +1)

2
X n . ■
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Exercise 3.1.8. Prove that for all n > 0,

n∑
k=0

(
n

k

)2

=
(

2n

n

)
.

Hint. Compute a well-chosen generating function.

Solution of Exercise 3.1.8. Fix n ∈N. Since ak := (n
k

)
equals

( n
n−k

)
for 06 k 6 n, we have

n∑
k=0

(
n

k

)2

=
n∑

k=0
ak an−k .

By the product formula, this is the term in X n of the square of the series

∞∑
k=0

ak X k =
n∑

k=0

(
n

k

)
X k = (1+X )n

(using that ak = 0 for k > n, and the Binomial theorem). Thus

n∑
k=0

(
n

k

)2

= [X n] (1+X )2n = [X n]
2n∑

k=0

(
2n

k

)
X k =

(
2n

n

)

(by another use of the Binomial theorem). ■

Exercise 3.1.9. Let (an)n>0 be a sequence defined by a0 = 0 and for all n > 1,

an = 2an−1 +1. (?)

What is the generating function for (an)n>0?

Solution of Exercise 3.1.9. The recurrence relation (?) gives∑
n>1

an X n = 2X
∑

n>1
an−1X n−1 + ∑

n>1
X n ,

that is (since a0 = 0)

A(X ) = 2X A(X )+ X

1−X
.

Solving this equation in A(X ) yields

A(X ) = X

(1−2X )(1−X )
= 1

1−2X
− 1

1−X
.

Remark. Hence an = [X n] A(X ) = 2n −1. (This is obvious because (?) says that (an +1) = 2(an−1 +1)
for all n > 1.) ■
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Exercise 3.1.10. Let (bn)n>0 be a sequence defined by b0 = 1 and for all n > 1,

bn = 2bn−1 +n −1. (?)

1. What is the generating function for (bn)n>0?

2. Give an explicit formula for bn .

Solution of Exercise 3.1.10.

1. The recurrence relation (?) gives∑
n>1

bn X n = 2X
∑

n>1
bn−1X n−1 + ∑

n>1
(n −1)X n ,

that is (since b0 = 1)

B(X )−1 = 2X B(X )+ X

(1−X )2
.

Solving this equation in B(X ) yields

B(X ) = 1

1−2X
+ X 2

(1−X )2(1−2X )
= 2

1−2X
− 1

(1−X )2
.

2. Hence bn = [X n] B(X ) = 2n+1 −n −1. ■

Exercise 3.1.11. We saw that if f is the generating function for (an)n>0, then f /(1−X ) is the gener-
ating function for (

∑n
j=0 a j )n>0.

Use this to prove that the Fibonacci numbers fn satisfy, for all n > 0,

f0 + f1 +·· ·+ fn = fn+2 −1. (?)

Solution of Exercise 3.1.11. Recall the generating function F for the Fibonacci numbers:

F (X ) = X

1−X −X 2
.

On the one hand, the generating function for ( f0 +·· ·+ fn)n>0 is

F (X )

1−X
= X

(1−X )(1−X −X 2)
.

On the other hand, the generating function for ( fn+2 −1)n>0 is

∑
n>0

( fn+1 + fn −1) X n =
(

1

X
+1

)
F (X )− 1

1−X
= X

(1−X )(1−X −X 2)
.

Since both generating functions are equal, this proves (?). ■
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Exercise 3.1.12. Let cn,k denote the number of compositions of n into k (nonzero) parts.

1. What is the (univariate) generating function for (cn,k )n>0?

2. Give an exact formula for cn,k . You may use the formula

∑
n>0

(
n

k

)
X n = X k

(1−X )k+1
.

Can you give a combinatorial interpretation?

3. What is the (bivariate) generating function for (cn,k )k>0?

4. Deduce an exact formula for cn , the number of compositions of n. Can you give a combinatorial
interpretation?

Solution of Exercise 3.1.12.

1. Fix k. A composition of n into k parts is described by an ordered k-tuple of positive (nonzero)
integers (n1, . . . ,nk ) ∈ Nk such that n1 + ·· ·+nk = n. Thus, the combinatorial class Ck of com-
positions of n into k parts corresponds to the kth power of the combinatorial class N := N of
positive integers (with size function |n| := n for every n ∈N ). The generating function for N is

N (X ) := ∑
n∈N

X |n| =
∞∑

n=1
X n = X

1−X
.

Therefore, by the product principle, the generating function for Ck is

Ck (X ) = N (X )k = X k

(1−X )k
.

2. Then ∑
n>0

cn,k X n =: Ck (X ) = X · X k−1

(1−X )k
= ∑

n>0

(
n

k −1

)
X n+1 = ∑

n>0

(
n −1

k

)
X n .

Identifying the terms in X n yields cn,k = (n−1
k−1

)
. One can interpret this combinatorially as the

number of ways to divide a sequence of n “balls” into k (non-empty) parts by placing k − 1
“separators” among n −1 possible emplacements, e.g.

• • • • • • • • •
0 1 n −1 n

corresponds to the composition (3,1,2,3) of n = 9 into k = 4 parts, placing the k −1 = 3 separa-
tors (in grey) at positions {3,4,6} among {1, . . . ,n −1}.

3. The bivariate generating function for (cn,k )n,k>0 is

C (X ,Y ) := ∑
n,k>0

cn,k X nY k = ∑
k>0

Ck (X )Y k = ∑
k>0

(
X Y

1−X

)k

= 1−X

1−X −X Y
.
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4. In particular

C (X ) := ∑
n>0

cn X n =C (X ,1) = 1−X

1−2X
.

Thus cn = [X n] C (X ) = 2n − 2n−1 = 2n−1 (n > 1). Combinatorially, we divide a sequence of n
“balls” by fixing a subset of {1, . . . ,n−1} corresponding to the emplacements of the “separators”.

■

Exercise 3.1.13.

1. Show that ∑
n,k>0

p(n | k parts, parts ≡ j mod m) qn zk = 1

(zq j ; qm)∞
,

and ∑
n,k>0

Q(n | k parts, parts ≡ j mod m) qn zk = (−zq j ; qm)∞.

2. For n,k,m nonnegative integers, let a(n,k,m) denote the number of partions of n into k distinct
parts congruent to 2 mod 3 and m parts congruent to 1 mod 6, such that 2 is not a part. What is
the (triviariate) generating function for an,k,m?

Solution of Exercise 3.1.13.

1. Parts congruent to j mod m are of the form j + r m, r > 0. Thus∑
n,k>0

p(n | k parts; parts ≡ j mod m) qn zk = ∏
r>0

(1+ zq j+r m + z2q2( j+r m) +·· · )

= ∏
r>0

∑
k>0

(zq j+r m)k

= ∏
r>0

1

1− zq j qr m

= 1

(zq j ; qm)∞
,

and ∑
n,k>0

Q(n | k parts; parts ≡ j mod m) qn zk = ∏
r>0

(1+ zq j+r m)

= (−zq j ; qm)∞.

2. Parts congruent to 2 mod 3, but not equal to 2, are of the form 5+3k, k > 0, and parts congruent
to 1 mod 6 are of the form 1+6k, k > 0. Thus∑

n,k,m>0
a(n,k,m) qn zk t m = ∏

k>0

1+ zq5+3k

1− t q1+6k

= (−zq5; q3)∞
(t q ; q6)∞

. ■
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Exercise 3.1.14. Using generating functions, show that the number of partitions of n into parts
congruent to ±1 mod 6 equals the number of partitions of n into distinct parts congruent to ±1 mod 3.

Solution of Exercise 3.1.14. On the one hand,

∑
n>0

p(n | parts ≡±1 mod 6) qn = ∏
k≡±1 mod 6

1

1−qk
.

On the other hand, ∑
n>0

Q(n | parts ≡±1 mod 3) qn = ∏
k≡±1 mod 3

(1+qk ).

But both products are equal:

∏
k≡±1 mod 3

(1+qk ) = ∏
k≡±1 mod 3

(1+qk ) · 1−qk

1−qk

= ∏
k≡±1 mod 3

1−q2k

1−qk

= ∏
k≡±1 mod 3

and k odd

1

1−qk

= ∏
k≡±1 mod 6

1

1−qk
. ■

Exercise 3.1.15 (a bit challenging). Prove that the number of partitions of n such that each part
appears 2, 3 or 5 times equals the number of partitions of n into parts congruent to ±2, ±3, or 6
mod 12.

Solution of Exercise 3.1.15. On the one hand (using that 1+x2 +x3 +x5 = (1+x2)(1+x3)),

∑
n>0

p(n | each part appears 2,3, or 5 times) qn =
∞∏

k=1
(1+q2k +q3k +q5k )

=
∞∏

k=1
(1+q2k )(1+q3k ).

On the other hand,

∑
n>0

p(n | parts ≡±2,±3, or 6 mod 12) qn = ∏
k≡±2,±3,6 mod 12

1

1−qk
.
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Again, both products are equal:

∞∏
k=1

(1+q2k )(1+q3k ) =
∞∏

k=1
(1+q2k )(1+q3k ) · (1−q2k )(1−q3k )

(1−q2k )(1−q3k )

=
∞∏

k=1

(1−q4k )(1−q6k )

(1−q2k )(1−q3k )

= ∏
k ≡ 2 mod 4

or
k ≡ 3 mod 6

1

1−qk

= ∏
k≡±2,±3,6 mod 12

1

1−qk
. ■

Exercise 3.1.16. Show that for all n,k > 1,

p(n | k parts) = p(n −1 | k −1 parts)+p(n −k | k parts).

Solution of Exercise 3.1.16. Recall the generating function for partitions (which you should know by
heart): ∑

n,k>0
p(n | k parts) qn zk =

∞∏
i=1

1

1− zq i
=:

1

(zq ; q)∞
. (♥)

We first observe that

1

(zq ; q)∞
= zq + (1− zq)

(zq ; q)∞

= zq

(zq ; q)∞
+ 1

(zq2; q)∞
.

Then, using (♥) (substituting zq to z for the second term)∑
n,k>0

p(n | k parts) qn zk = zq
∑

n,k>0
p(n | k parts) qn zk + ∑

n,k>0
p(n | k parts)(zq)n zk

= ∑
n,k>0

p(n | k parts) qn+1zk+1 + ∑
n,k>0

p(n | k parts) qn+k zk .

Performing the changes of variables {n ← n+1,k ← k +1} in the first sum and n ← n+k in the second
sum finally leads to∑

n,k>0
p(n | k parts) qn zk = ∑

n,k>0
p(n −1 | k −1 parts) qn zk + ∑

n,k>0
p(n −k | k parts) qn zk .

We conclude by identifying the coefficients in qn zk . ■
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3.2 Ferrers diagrams and q-series identities

Exercise 3.2.1. Find the conjugates of the following partitions:

• 6+6+4+2,

• 3+3+2+1,

• 6+1.

Solution of Exercise 3.2.1. Given a partition λ, its conjugate λ′ is the partition whose Ferrers diagram
is obtained from that of λ by exchanging rows and columns. Thus:

Ferrers diagram of λ1 = 6+6+4+2. Ferrers diagram of λ′
1 = 4+4+3+3+2+2.

Ferrers diagram of λ2 = 3+3+2+1. Ferrers diagram of λ′
2 = 4+3+2.

Ferrers diagram of λ3 = 6+1. Ferrers diagram of λ′
3 = 2+1+1+1+1+1. ■

Exercise 3.2.2. Use conjugation to show that for all n,

p(n | distinct parts) = p(n | parts of every size from 1 to the largest part).

For example, for n = 5, the partitions of the first type are 5, 4+1 and 3+2, and the partitions of the
second type are 1+1+1+1+1, 2+1+1+1 and 2+2+1.

Solution of Exercise 3.2.2. Fix n > 0. By considering the Ferrers diagrams, we see that the map λ 7→ λ′

induces a one-to-one correspondance between the set Qn of partitions of n into distinct parts and the
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set Sn of partitions of n with parts of every size from 1 to the largest part. Indeed (denoting by F (λ)
the Ferrers diagram of a partition λ),

λ ∈Qn ⇐⇒ no two rows of F (λ) are equal

⇐⇒ no two columns of F (λ′) are equal

⇐⇒ λ′ contains the parts 1, 2, and so on, up to the largest part

⇐⇒ λ′ ∈Sn ,

for every partition λ of n. In particular |Qn | = |Sn |, i.e,

p(n | distinct parts) = p(n | parts of every size from 1 to the largest part). ■

Exercise 3.2.3. Show that for all n, the number of partitions of n which have nothing under the
Durfee square equals the number of partitions of n such that consecutive parts differ by at least 2.

Solution of Exercise 3.2.3. We have seen a simple transformation h on the set of partitions which bi-
jectively maps self-conjugate partitions onto partitions into distinct odd parts (given λ, take the suc-
cessive left-top hooks of its Ferrers diagram as the parts of h(λ)). The map h also induces a bijection
between partitions of n which have nothing under the Durfee square and partitions of n such that
consecutive parts differ by at least 2. For instance,

Ferrers diagram of λ= 7+6+6+4

(note that the number of hooks equals the width of the Durfee square), is mapped to

Ferrers diagram of h(λ) = 10+7+5+1.

Hence

p(n | nothing under the Durfee square) = p(n | consecutive parts differ by at least 2).

Remark. Another way to view this bijection is to transform the n×n Durfee square into a 2-staircase
of height n (indeed, n2 = 1+3+·· ·+ (2n −1)):

Ferrers diagram of a partition with
nothing under the Durfee square.

←→

+

Ferrers diagram of a partition where
consecutive parts differ by at least 2. ■
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Exercise 3.2.4. Using Ferrers diagrams, show that

1

(zq ; q)∞
= ∑

n>0

(
zn q2n2

(q ; q)n (zq ; q)2n
+ zn+1 q (n+1)(2n+1)

(q ; q)n (zq ; q)2n+1

)
.

Solution of Exercise 3.2.4. For every partition λ, let n be the largest nonnegative integer such that its
Ferrers diagram F (λ) contains the upper-left rectangle with size n×2n (so no upper-left rectangle with
size (n+1)×2(n+1)). This allows us to partition the set of partitions w.r.t. this rectangle-parameter n.
(The case n = 0 includes the empty partition and the partition of 1.) Depending on whether it con-
tains the rectangle with size (n +1)× (2n +1) or not, the Ferrers diagram of a partition with rectangle-
parameter n looks like

n

2n

g.f.

zn q2n2
partition into
6n parts:

g.f.
1

(q ; q)n

partition into parts 62n:

g.f.
1

(zq ; q)2n

or

n+1

2n+1

g.f.

zn+1 q(n+1)(2n+1)

partition into
6n parts:

g.f.
1

(q ; q)n

partition into parts 62n+1:

g.f.
1

(zq ; q)2n+1

(no box allowed in the grey area, as this would otherwise contradict the definition of n). By the union
and product principles, we conclude that the generating function (zq ; q)−1∞ of (p(n | k parts))n,k>0

fulfills the stated identity. ■

Exercise 3.2.5. Show that for every n ∈N,

∑
k∈Z

(−1)k Q

(
n − k(3k +1)

2

)
=

{
(−1) j , if n = j (3 j +1), j ∈Z,

0, otherwise.

Hint.

Usethepentagonalnumberstheorem.

Solution of Exercise 3.2.5. Let us compute the generating function for the sequence

an := ∑
k∈Z

(−1)k Q

(
n − k(3k +1)

2

)
, n > 0.

130

http://benjamin.dadoun.free.fr/afewexerciseswithsolutions.pdf?c
mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


B. Dadoun 3.2. FERRERS DIAGRAMS AND q-SERIES IDENTITIES

Then (with the change of variable n ← n + k(3k+1)
2 ),∑

n>0
an qn = ∑

k∈Z

∑
n>0

(−1)k Q(n) qn+ k(3k+1)
2

=
(∑

k∈Z
(−1)k q

k(3k+1)
2

)
·
( ∑

n>0
Q(n) qn

)
= (q ; q)∞ · (−q ; q)∞
= (q2; q2)∞

= ∑
j∈Z

(−1) j (
q2) j (3 j+1)

2

= ∑
j∈Z

(−1) j q j (3 j+1),

where we used Euler’s pentagonal numbers theorem twice (in the 3rd and 5th equalities). We conclude
by identifying the coefficient in qn . ■

Exercise 3.2.6. Show that ∑
n>0

qn(n+1)/2 = (q2; q2)∞
(q ; q2)∞

.

Hint.

UseJacobi’stripleproductidentity.
Solution of Exercise 3.2.6. The map f : n ∈Z 7→ n(n+1)/2 is two-to-one (we have f (−n−1) = f (n), n >
0), so ∑

n>0
qn(n+1)/2 = 1

2

∑
n∈Z

qn(n+1)/2

= 1

2
(−1; q)∞ · (−q ; q)∞ · (q ; q)∞

= (−q ; q)∞ · (q2; q2)∞

= (q2; q2)∞
(q ; q2)∞

,

where we applied Jacobi’s triple product identity (with z = 1) in the 2nd equality and Euler’s “odd
parts/distinct parts” theorem in the 4th equality. ■

Exercise 3.2.7. We will now use Euler’s Pentagonal numbers theorem to find the recurrence relation
for p(n) that was mentioned in class.

1. Show that (∑
k∈Z

(−1)k qk(3k+1)/2

)
·
( ∑

n>0
p(n) qn

)
= 1.

2. Deduce that for every n ∈N,

p(n) = ∑
k>1

(−1)k−1 p

(
n − k(3k ±1)

2

)
.
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3. Write p(10) as a sum of smaller values of p(n).

(This method, discovered by Leonhard Euler in the 18th century, is still the fastest way to compute p(n)
and is used in computing softwares such as Maple, Mathematica, etc.)

Solution of Exercise 3.2.7.

1. By Euler’s pentagonal numbers theorem,(∑
k∈Z

(−1)k qk(3k+1)/2

)
·
( ∑

n>0
p(n) qn

)
= (q ; q)∞ · 1

(q ; q)∞
= 1.

2. Taking the coefficient in qn on both sides yields∑
k∈Z,m>0 such that

k(3k+1)
2 +m=n

(−1)k p(m) = 0,

that is (isolating the term for k = 0, i.e, m = n)

p(n) = ∑
k>1

(−1)k−1 p

(
n − k(3k ±1)

2

)
.

3. For n = 10, the formula gives p(10) = p(9)+p(8)−p(5)−p(3) (= 42). ■

Exercise 3.2.8. Prove the second q-analogue of Pascal’s triangle.

Solution of Exercise 3.2.8. Recall that
[n+m

n

]
q is the generating function for the partitions whose Ferrers

diagrams fit into a rectangle of size n ×m (partitions into at most n parts, which are all at most m).
They consist of two types: those who actually fit in the smaller rectangle n× (m−1) (partitions into at
most n parts, all at most m−1), which are generated by

[n+m−1
n

]
q , and those who do not (partitions into

at most n parts, all at most m, with at least one part m), generated by qm ·[n+m−1
n−1

]
q (decomposition as

the first row, which has size m, and the remaining which is a partition fitting in a rectangle with size
(n −1)×m). Thus [

n +m

n

]
q

=
[

n +m −1

n

]
q

+ qm

[
n +m −1

n −1

]
q

,

which is the second q-analogue of Pascal’s triangle.

Remark 1. The first q-analogue of Pascal’s triangle is[
n +m

n

]
q

=
[

n +m −1

n −1

]
q

+ qn

[
n +m −1

n

]
q

.
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If we exchange the roles of m and n in this formula and use that
[a+b

a

]
q = [a+b

b

]
q , then we recover the

second q-analogue.

Remark 2. We could also use the exact formula for the q-binomial coefficients: setting (a)n := (a; q)n

for any a, we have [
n +m

n

]
q

−
[

n +m −1

n

]
q

= (q)n+m

(q)n (q)m
− (q)n+m−1

(q)n (q)m−1

= (q)n+m−1

(q)n (q)m
· ((1−qn+m)− (1−qm)

)︸ ︷︷ ︸
=qm (1−qn )

= qm

[
n +m −1

n −1

]
q

. ■

Exercise 3.2.9. Give an analytic proof of the q-binomial series

1

(zq ; q)n
= ∑

m>0
zm qm

[
n +m −1

m

]
q

.

Solution of Exercise 3.2.9. Call fn(q ; z) the right-hand side, and proceed by induction over n. Clearly
f1(q ; z) = (1− zq)−1 = (zq ; q)−1

1 (geometric series), so the identity is true for n = 1. Suppose it is true
for some n > 1. Then, using the first q-analogue of Pascal’s triangle[

n +m

m

]
q

=
[

n +m −1

m

]
q

+ qn

[
n +m −1

m −1

]
q

,

we obtain

fn+1(q ; z) = ∑
m>0

zm qm

([
n +m −1

m

]
q

+ qn

[
n +m −1

m −1

]
q

)

= fn(q ; z)+ ∑
m>0

zm qm+n

[
n +m −1

m −1

]
q

.

Thus, by the induction hypothesis (and observing that the term in m = 0 of the last sum above is zero),

fn+1(q ; z) = 1

(zq ; q)n
+ zqn+1

∑
m>0

zm qm

[
n +m

m

]
q

= 1

(zq ; q)n
+ zqn+1 fn+1(q ; z),

which solves to

fn+1(q ; z) = 1

1− zqn+1
· 1

(zq ; q)n
= 1

(zq ; q)n+1
,

as expected. ■
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Exercise 3.2.10. Show that for all integers m,n > 0,

n∑
j=0

q j

[
m + j

m

]
q

=
[

n +m +1

m +1

]
q

.

Solution of Exercise 3.2.10. We use the second q-analogue of Pascal’s triangle:

q j

[
m + j

m

]
q

=
[

m + j +1

m +1

]
q

−
[

m + j

m +1

]
q

.

Then (telescopic summation)

n∑
j=0

q j

[
m + j

m

]
q

=
n∑

j=0

([
m + j +1

m +1

]
q

−
[

m + j

m +1

]
q

)

=
[

m +n +1

m +1

]
q

−
[

m

m +1

]
q︸ ︷︷ ︸

=0

=
[

m +n +1

m +1

]
q

. ■

Exercise 3.2.11. Let

Hn(t ) :=
n∑

j=0

[
n

j

]
q

t j .

Prove that ∑
n>0

Hn(t ) xn

(q ; q)n
= 1

(x; q)∞ (xt ; q)∞
.

Solution of Exercise 3.2.11. Using the exact formula[
n

j

]
q

= (q ; q)n

(q ; q) j (q ; q)n− j
,

the left-hand side is ∑
n>0

(
n∑

j=0

(xt ) j

(q ; q) j
· xn− j

(q ; q)n− j

)
=

( ∑
n>0

(xt )n

(q ; q)n

)
·
( ∑

n>0

xn

(q ; q)n

)
= F (q ; xt ) ·F (q ; x),

where

F (q ; y) = ∑
n>0

yn

(q ; q)n
.
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Since (q ; q)−1
n is the generating function for partitions into at most n parts, we see that F is the gener-

ating function for partitions of n into exactly n parts, where zero parts are allowed:∑
n>0

yn

(q ; q)n
= ∑

n>0

n∑
k=0

p(n | k parts) qn yk +n−k︸ ︷︷ ︸
“zero parts”

= ∑
n>0

n∑
k=0

p(n | n parts > 0; k parts > 0) qn yn

= ∑
n>0

p(n | n parts > 0) qn yn

=
∞∏

k=0

1

1− yqk

= 1

(y ; q)∞

(for the second equality, observe that, by adding/removing zero parts, there is an easy bijection be-
tween the partitions of n into k (positive) parts and the partitions of n into n nonnegative parts of
which k are positive). We conclude that∑

n>0

Hn(t ) xn

(q ; q)n
= 1

(x; q)∞ (xt ; q)∞
.

■

Exercise 3.2.12. Show that, if n is odd,

n∑
j=0

(−1) j

[
n

j

]
q

= 0.

What happens if n is even?

Solution of Exercise 3.2.12. The left-hand side is Hn(−1), where, by Exercise 3.2.11,

Hn(−1)

(q ; q)n
= [xn]

1

(x; q)∞ (−x; q)∞
= [xn]

1

(x2; q2)∞
.

Since the right-hand side is an even function in x, this proves that Hn(−1) = 0 if n is odd. If however n
is even, n = 2p, then the right-hand side is the generating function (in the variable q2) for partitions
into exactly p parts, where parts 0 are allowed. By discarding the 0 parts, this is also the generating
function (in the variable q2) for partitions into at most p (positive) parts, i.e (q2; q2)−1

p . Then

Hn(−1) = (q ; q)2p

(q2; q2)p
= (q ; q2)p = (1−q)(1−q3) · · · (1−qn−1).

Remark. The change of variable j ← n − j also shows that

Hn(−1) =
n∑

j=0
(−1)n− j

[
n

j

]
q

= (−1)n
n∑

j=0
(−1) j

[
n

j

]
q

= (−1)n Hn(−1).

So indeed, if n is odd, then Hn(−1) = 0. ■
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Exercise 3.2.13. Let n tend to infinity in the q-binomial series

1

(zq ; q)n
= ∑

m>0
zm qm

[
n +m −1

m

]
q

.

1. What do we obtain?

2. Give a combinatorial interpretation of the obtained formula.

Solution of Exercise 3.2.13.

1. As n → ∞, the left-hand side tends to (zq ; q)−1∞ (at least when |q| < 1 and |zq| < 1), while the
right-hand side tends to ∑

m>0

zm qm

(q ; q)m
.

Indeed, for |q | < 1, we have seen that

lim
n→∞

[
n +m −1

m

]
q

= 1

(q ; q)m
.

Moreover (using the inequalities 1−|q |6 |1−q |6 1+|q |)

∀n ∈N,

∣∣∣∣∣zm qm

[
n +m −1

m

]
q

∣∣∣∣∣6
∣∣∣∣zq · 1+|q|

1−|q|
∣∣∣∣m

=: ηm ,

so that, for |q| and |z| small enough, we have η< 1 and thus

lim
N→∞

limsup
n→∞

∑
m>N

zm qm

[
n +m −1

m

]
q

= 0.

We conclude that

1

(zq ; q)∞
= lim

n→∞
1

(zq ; q)n
= lim

n→∞
∑

m>0
zm qm

[
n +m −1

m

]
q

= ∑
m>0

zm qm

(q ; q)m
.

2. We can interpret this formula combinatorially as partitioning the set of integer partitions w.r.t.
their number m of parts: their Ferrers diagram are exactly determined by one first column
of height m, generated by zm qm , and the remaining which corresponds to a partition into at
most m parts, generated by (q ; q)−1

m . Thus:

1

(zq ; q)∞
= ∑

m>0

zm qm

(q ; q)m
.

■

Exercise 3.2.14. Show that ∑
n>0

(−1)n(2n +1) q
n(n+1)

2 = (q ; q)3
∞.
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Solution of Exercise 3.2.14. Recall Jacobi’s triple product identity: for |q | < |z| < |q|−1,∑
n∈Z

zn q
n(n+1)

2 = (q ; q)∞ (−zq ; q)∞ (−z−1; q)∞.

Fix |q | < 1. In the annulus Aq := {z ∈ C : |q| < |z| < |q |−1}, the left-hand side is a converging Laurent
series, while the infinite product of the right-hand side converges locally uniformly, so we may differ-
entiate both sides with respect to z. Hence∑

n∈Z
n zn−1q

n(n+1)
2 = (q ; q)∞

d

dz

[
(−zq ; q)∞ (−z−1; q)∞

]
.

We naturally aim at evaluating this at z =−1 ∈Aq . On the one hand, the left-hand side at z =−1 is∑
n∈Z

n(−1)n−1 q
n(n+1)

2 =− ∑
n>0

(−1)n(2n +1) q
n(n+1)

2

(using the change of variable n ← −n − 1 in the sum over n 6 −1). On the other hand, writing
(−z−1; q)∞ = (−z−1q ; q)∞ (1+z−1) and observing that 1+z−1 = 0 at z =−1, the right-hand side at z =−1
reduces to

(q ; q)3
∞

d

dz

(
1+ 1

z

)∣∣∣
z=−1

= − (q ; q)3
∞.

We thus conclude that ∑
n>0

(−1)n(2n +1) q
n(n+1)

2 = (q ; q)3
∞. ■

3.3 Congruence identities

Exercise 3.3.1. Prove the second Ramanujan congruence: for every n > 0,

p(7n +5) ≡ 0 mod 7.

Solution of Exercise 3.3.1. Recalling that, modulo 7, (a +b)7 ≡ a7 +b7 for all integers a,b, we have

∑
n>0

p(n) qn = 1

(q ; q)∞
= (q ; q)6∞

(q ; q)7∞
≡ (q ; q)6∞

(q7; q7)∞
,

where by Exercise 3.2.14

(q ; q)6
∞ = (

(q ; q)3
∞

)2 =
( ∑

n>0
(−1)n(2n +1) q

n(n+1)
2

)2

.

Therefore, modulo 7,∑
n>0

p(7n +5) q7n+5 ≡ ∑
i , j ,k>0 s.t.

(i+1
2 )+( j+1

2 )+��7k≡5

(−1)i+ j (2i +1)(2 j +1)p(7k) q(i+1
2 )+( j+1

2 )+7k .

137

mailto:benjamin.dadoun@gmail.com?subject=A+few+exercises


A few exercises B. Dadoun

i

j
0 1 2 3 4 5 6

0 0 1 3 6 3 1 0

1 2 4 0 4 2 1

2 6 2 6 4 3

3 5 2 0 6

4 6 4 3

5 2 1

6 0

— Table of
(i+1

2

)+ ( j+1
2

)
mod 7. —

The following table shows that, for i , j > 0 to fulfill
(i+1

2

)+ ( j+1
2

) ≡ 5 mod 7, both i and j must be
congruent to 3 mod 7:
But if i , j ≡ 3 mod 7, then 2i +1,2 j +1 ≡ 0 mod 7, so the right-hand side above is 0. We conclude that
for every n > 0,

p(7n +5) ≡ 0 mod 7. ■

Exercise 3.3.2. For k > 2, the number of partitions of n into parts not divisible by k equals the
number of partitions of n where each part occurs at most k −1 times. Prove this:

1. analytically,

2. bijectively.

Solution of Exercise 3.3.2.

1. The generating function for partitions of n into parts not divisible by k is, setting Rk := {n ∈
N : n not divisible by k},

∏
n∈Rk

1

1−qn
=

∞∏
n=1

1−qnk

1−qn
,

and the one for partitions of n where each part occurs at most k −1 times is

∞∏
n=1

(1+qn +·· ·+q (k−1)n) =
∞∏

n=1

1− (qn)k

1−qn
.

They are indeed the same.

2. Given a partition where each part occurs at most k −1 times, divide any part m divisible by k
into k parts each equal to m/k, and repeat until there is no more part multiple of k. Conversely,
given a partition into parts not divisible by k, merge any sequence of k same parts equal to m
into one single part equal to km, and repeat unti there is no more part occurring at least k times.
For example, for k = 3, the partition 18+6+4+4 becomes

(18,6,42) → (64,42) → (63,42,23) → (62,42,26) → (6,4,29) → (42,212),
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and conversely

(42,212) → (6,42,29) → (62,42,26) → (63,42,23) → (18,42,23) → (18,6,42). ■

Exercise 3.3.3 (Lemma for Schur’s theorem). Let πm(n) count the number of partitions λ := λ1 +
·· ·+λs of n such that

λ1 6m and, for all 16 i < s, λi −λi+1 >

{
4, if λi divisible by 3,

3, otherwise.
(Cm)

Then we have the relations

(i) π3m+1(n) =π3m(n)+π3m−2(n −3m −1),

(ii) π3m+2(n) =π3m+1(n)+π3m−1(n −3m −2),

(iii) π3m+3(n) =π3m+2(n)+π3m−1(n −3m −3).

Prove (ii) and (iii).

Solution of Exercise 3.3.3.
Letλbe a partition of n satisfying (C3m+2). Ifλ1 = 3m+2, thenλ2 6 3m−1, and thusλ= (3m+2)+λ̃

where λ̃ is a partition of n − 3m − 2 satisfying (C3m−1). If otherwise λ1 6 3m + 1, then λ is in fact a
partition of n satisfying (C3m+1). Since both cases are exhaustive and disjoint, we deduce that

π3m+2(n) =π3m−1(n −3m −2)+π3m+1(n),

which is (ii).

Let now λ be a partition of n satisfying (C3m+3). If λ1 = 3m + 3, then λ2 6 3m − 1, and thus λ =
(3m +3)+ λ̃ where λ̃ is a partition of n −3m −3 satisfying (C3m+1). If otherwise λ1 6 3m +2, then λ is
in fact a partition of n satisfying (C3m+2). Again, both cases are exhaustive and disjoint, so

π3m+3(n) =π3m−1(n −3m −3)+π3m+2(n),

which is (iii). ■

Exercise 3.3.4. Let (an)n>0 be a sequence such that lim
n→∞an exists. Prove Abel’s lemma:

lim
x→1−

(1−x)
∑

n>0
an xn = lim

n→∞an .

Solution of Exercise 3.3.4. We may suppose without loss of generality that an > 0 (the real/complex
case will follow by considering positive/real and negative/imaginary parts). On the one hand,

∀N ∈N, (1−x)
∑

k<N
ak xk 6 N (1−x) sup

k<N
ak −−−−→

x→1−
0.
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On the other hand,

∀N ∈N, (1−x)
∑

k>N
ak xk 6 (1−x)

(
sup
k>N

ak

) ∑
k>N

xk = xN sup
k>N

ak ,

and also

(1−x)
∑

k>N
ak xk > xN inf

k>N
ak .

Putting the two pieces together, we obtain the chain of inequalities

limsup
x→1−

(1−x)
∑

n>0
an xn 6 limsup

n→∞
an

6

liminf
x→1−

(1−x)
∑

n>0
an xn > liminf

n→∞ an .

Now, if ` := limn→∞ an exists, then all members of the above display are equal to `. This proves Abel’s
lemma. ■

Exercise 3.3.5 (Reverse bijection for Schur’s theorem).

1. Show that the transformation from P1 to P4 in Schur’s theorem is equivalent to the following
process: As long as there exists some number that is not at least 3 greater than the number be-
low, subtract 3 from this number, add 3 to the number below, and exchange these two numbers.
Example:

P1 =
11
18
5
3

→
21
8
6
2

→
21
9
5
2

= P ′
1.

2. Show that the following process is the reverse bijection of the above: Start by splitting parts of P4

that are multiple of 3 into pairs of parts differing by 1 or 2. Example:

P4 =
21
9
5
2

→
11+10
5+4
5
2

= P ′
4.

We obtain a partition P ′
4 with no multiples of 3. Now as long as the smallest part of some pair

is less than 3 greater than the part below, subtract 3 from the largest part of the pair, add 3 to
the part below, and switch their positions. This process ends with a partition into parts that are
not multiples of 3, where parts differing by at most two are paired up, starting from the smallest
part. Example:

P ′
4 =

11+10
5+4
5
2

→
11+10
8
4+2
2

→
11
10+8
5
2+1

=
11
18
5
3

= P ′′
1 .
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Solution of Exercise 3.3.5.

1. Let P ′
1 := [p1; · · · ; pm] be the result of the stated process (applied to P1). Writing σ(k), 16 k 6m,

for the position in P ′
1 of the part corresponding to the kth row rk of P1, the table P ′

1 is thus given
by

pσ(k) = rk +3(k −σ(k)) = rk −3(m −k)+3(m −σ(k)), 16 k 6m,

where p1 > p2 > · · ·> pm , and consecutive rows differ by at least 3. In particular σ(k) is also the
position of the row corresponding to rk after subtracting the 3-staircase [3(m −1); · · · ;3;0] to P1

and rearranging the table in descending order. We thus see that P ′
1 consists in subtracting the

3-staircase to P1, reordering, and adding back the 3-staircase, i.e, P ′
1 = P4 as described in Schur’s

theorem.

2. Let P ′′
1 be the result of the second process (applied to P ′

1). The transformations occurring in the
process P ′

1 7→ P ′′
1 are of the form [a+b;c] → [c+3;b+(a−3)], where a+b ≡ 0 mod 3 (with a−b ∈

{1,2}), c ≡±1 mod 3, and b−c 6 2. Since x := c +3 ≡ c ≡±1 mod 3 and y := b+ (a−3) ≡ a+b ≡ 0
mod 3, with (c +3)− (b + a −3) = 6+ c − (a +b) 6 2 (because a > b +1 > 2 and b − c 6 2), the
pair [x; y] is reverted back to [y +3; x −3] = [a +b;c] by the first process.

Conversely, recall that P1 originates from a partition into distinct parts which are ±1 mod 3, by
merging pairs of parts differing by at most 2 (necessarily into a multiple of 3), starting from the
lowest part. Thus, if [x; y] are two consecutive rows in P1 differing by at most 2, then x ≡ ±1
mod 3 and y ≡ 0 mod 3. Since y results from the merging of two parts a,b 6 x with a,−b ≡ ±1
mod 3 and a−b ∈ {1,2}, the pair [x; y] is transformed into [(b+3)+a; x−3] where (b+3)−a ∈ {1,2}
and a − (x −3) 6 2 (since x > a and x, a are distinct). These are the conditions for the second
process to revert this pair back to [x −3+3;(b +3)+a −3] = [x; y].

Remark. We have thus a bijection P 7→ P4 from the set C of partitions into distinct parts con-
gruent to ±1 mod 3 and the set D of partitions where parts differ by at least 3 and no consecutive
multiples of 3 appear. If this bijection preserves the size, it does however not strictly preserve
the number of parts. It will do if parts divisible by 3 are counted twice: indeed,

#parts(P ) = #parts(P4)+#parts-divisible-by-3(P4).

(An analytic argument for this refinement is given in Exercise 3.3.6.) ■

Exercise 3.3.6 (Refinement of Schur’s theorem, Gleissberg). The goal of this exercise is to prove
the following refinement of Schur’s theorem due to Gleissberg. Let C (m,n) denote the number of
partitions if n into m distinct parts congruent to 1 or 2 mod 3. Let D(m,n) denote the number of
partitions of n into m parts (counting parts divisible by 3 twice), where parts differ by at least 3 and no
two consecutive multiples of 3 appear. Then for all m,n > 0, C (m,n) = D(m,n).

1. Let π`(m,n) denote the number of partitions counted by D(m,n) such that the largest part does
not exceed `. Prove that for all `,m,n positive integers,

π3`+1(m,n) =π3`(m,n)+π3`−2(m −1,n −3`−1),

π3`+2(m,n) =π3`+1(m,n)+π3`−1(m −1,n −3`−2),

π3`+3(m,n) =π3`+2(m,n)+π3`−1(m −2,n −3`−3).
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2. Define, for |q| < 1, |t | < 1,

a`(t , q) := ∑
m,n>0

π`(m,n) t m qn .

What is lim`→∞ a`(t , q)?

3. Prove that

a3`−1(t q3, q) = (1+ t q3`+1 + t q3`+2) a3`−4(t q3, q)+ t 2q3`+3(1−q3`−3) a3`−7(t q3, q).

4. Show that

a3`+3(t , q) = (1+ t q3`+1 + t q3`+2) a3`(t , q)+ t 2q3`+3(1−q3`−3) a3`−3(t , q).

5. What are the initial values a−1(t q3, q), a2(t q3, q), a3(t , q), a6(t , q)? Verify that

a3(t , q) = (1+ t q)(1+ t q2) a−1(t q3, q),

and

a6(t , q) = (1+ t q)(1+ t q2) a2(t q3, q).

6. Deduce that for all `> 0,

a3`+3(t , q) = (1+ t q)(1+ t q2) a3`−1(t q3, q).

7. Conclude by finding lim`→∞ a`(t , q).

Solution of Exercise 3.3.6 (after G. E. Andrews, On a theorem of Schur and Gleissberg, Arch. Math.
(Basel) 22 (1971), 165–167; MR: 0286767).

1. Let λ :=λ1+·· ·+λs be a partition of n with m counted parts and λ1 6 3`+1. If λ1 = 3`+1, then
λ = (3`+1)+ λ̃ where λ̃ := λ2 +·· ·+λs is a partition of n −3`−1 with m −1 counted parts and
λ̃1 = λ2 6 3`−2. If otherwise λ1 6 3`, then λ is in fact a partition of n with m counted parts
whose largest part does not exceed 3`. As both cases are exhaustive and disjoint, we deduce the
first identity

π3`+1(m,n) =π3`(m,n)+π3`−2(m −1,n −3`−1). (3.1)

The two other identities

π3`+2(m,n) =π3`+1(m,n)+π3`−1(m −1,n −3`−2), (3.2)

π3`+3(m,n) =π3`+2(m,n)+π3`−1(m −2,n −3`−3), (3.3)

are obtained similarly. (Beware of the 2 in (3.3), as multiples of 3 are counted twice.)
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2. By definition, D(m,n) = lim↑
`→∞

π`(m,n). Since for every t , q > 0 and K ∈N,

π(t , q) := ∑
m,n>0

D(m,n) t m qn >
∑

m,n>0
π`(m,n) t m qn >

∑
K>m,n>0

π`(m,n) t m qn ,

we obtain

π(t , q) > limsup
`→∞

a`(t , q) > liminf
`→∞

a`(t , q) >
∑

K>m,n>0
D(m,n) t m qm .

As this is true for all K ∈N, it easily follows that lim
`→∞

a`(t , q) =π(t , q).

3. Multiplying (3.1), (3.2), (3.3) by t m qn and summing over all m,n > 0, we obtain

a3`+1(t , q) = a3`(t , q)+ t q3`+1 a3`−2(t , q), (a)

a3`+2(t , q) = a3`+1(t , q)+ t q3`+2 a3`−1(t , q), (b)

a3`+3(t , q) = a3`+2(t , q)+ t 2q3`+3 a3`−1(t , q). (c)

Rewrite (b) and (c) as

a3`+1(t , q) = a3`+2(t , q)− t q3`+2 a3`−1(t , q), (b′
1)

a3`−2(t , q) = a3`−1(t , q)− t q3`−1 a3`−4(t , q), (b′
2)

a3`(t , q) = a3`−1(t , q)+ t 2q3` a3`−4(t , q). (c ′)

and substitute (b′
1), (b′

2), (c ′) into (a):

a3`+2(t , q)− t q3`+2 a3`−1(t , q)

=
(
a3`−1(t , q)+ t 2q3` a3`−4(t , q)

)
+ t q3`+1

(
a3`−1(t , q)− t q3`−1 a3`−4(t , q)

)
.

That is

a3`+2(t , q) = (1+ t q3`+1 + t q3`+2) a3`−1(t , q)+ t 2q3`(1−q3`) a3`−4(t , q). (d)

Substituting `−1 to ` yields

a3`−1(t , q) = (1+ t q3`−2 + t q3`−1) a3`−4(t , q)+ t 2q3`−3(1−q3`−3) a3`−7(t , q), (e)

which is the desired identity if we replace t by t q3:

a3`−1(t q3, q) = (1+ t q3`+1 + t q3`+2) a3`−4(t q3, q)+ t 2q3`+3(1−q3`−3) a3`−7(t q3, q).

4. We perform (d)+ t 2q3`+3 × (e):[
a3`+2(t , q)+ t 2q3`+3 a3`−1(t , q)

]
= (1+ t q3`+1 + t q3`+2) a3`−1(t , q)+ t 2q3`(1−q3`) a3`−4(t , q)

+ t 2q3`+3
(
(1+ t q3`−2 + t q3`−1) a3`−4(t , q)t 2q3`−3(1−q3`−3) a3`−7(t , q)

)
= (1+ t q3`+1 + t q3`+2)

[
a3`−1(t , q)+ t 2q3` a3`−4(t , q)

]
+ t 2q3`+3(1−q3`−3)

[
a3`−4(t , q)+ t 2q3`−3 a3`−7(t , q)

]
.
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Recalling (c ′), the three terms in brackets are a3`+3(t , q), a3`(t , q), and a3`−3(t , q) respectively.
Thus

a3`+3(t , q) = (1+ t q3`+1 + t q3`+2) a3`(t , q)+ t 2q3`+3(1−q3`−3) a3`−3(t , q).

5. Let us list the partitions whose largest part is at most `, where consecutive parts differ by at
least 3 and no two consecutive multiples of 3 appear:

(i) for `=−1: ;; hence a−1(t , q) = 1;

(ii) for `= 2: ;, 1, 2; hence a2(t , q) = 1+ t q + t q2;

(iii) for `= 3: ;, 1, 2, 3; hence a3(t , q) = 1+ t q + t q2 + t 2q3 = (1+ t q)(1+ t q2);

(iv) for `= 6: ;, 1, 2, 3, 4, 5, 6, 4+1, 5+2, 5+1, 6+2, 6+1; hence a6(t , q) = 1+ t q + t q2+ t 2q3+
t q4 + t q5 + t 2q6 + t 2q5 + t 2q7 + t 2q6 + t 2+1q8 + t 2+1q7

= (1+ t q)(1+ t q2)(1+ t q4 + t q5) = (1+ t q)(1+ t q2) a2(t q3, q).

6. We proceed by (double) induction on `. The cases `= 0 and `= 1 have been checked in Ques-
tion 5. Let `> 2 and assume that the identities

a3`(t , q) = (1+ t q)(1+ t q2) a3`−4(t q3, q),

a3`−3(t , q) = (1+ t q)(1+ t q2) a3`−7(t q3, q),

hold true. Then, using the recurrence relation of Question 4,

a3`+3(t , q) = (1+ t q3`+1 + t q3`+2) a3`(t , q)+ t 2q3`+3(1−q3`−3) a3`−3(t , q)

= (1+ t q)(1+ t q2)

[
(1+ t q3`+1 + t q3`+2) a3`−4(t q3, q)

+ t 2q3`+3(1−q3`−3) a3`−7(t q3, q)

]
.

Hence, by Question 3,

a3`+3(t , q) = (1+ t q)(1+ t q2) a3`−1(t q3, q). ( f )

7. Letting `→∞ in ( f ) we find, using Question 2,

π(t , q) = (1+ t q)(1+ t q2)π(t q3, q),

for |q| < 1, |t | < 1. By immediate induction,

π(t , q) =π(t q3r , q)
r−1∏
k=0

(1+ t q3k+1)(1+ t q3k+2)

=π(t q3r , q) (−t q ; q3)r (−t q2; q3)r ,

for every r ∈N. Letting r →∞ we end up with (since π(0, q) ≡ 1)

π(t , q) = (−t q ; q3)∞ (−t q2; q3)∞.

That is ∑
m,n>0

D(m,n) t m qn = ∑
m,n>0

C (m,n) t m qn . ■
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Exercise 3.3.7. Let M(k,r,n) denote the number of partitions of n with crank congruent to k mod-
ulo r . Show that for all n > 0,

M(0,7,7n +5) = ·· · = M(6,7,7n +5).

Solution of Exercise 3.3.7. Write ζ := e i2π/7 and (a)∞ := (a; q)∞.

Step 1. We show that for every n > 0,

an := [q7n+5]
(q)∞

(ζq)∞ (q/ζ)∞
= 0.

Indeed, using that
∏

|k|63(1−ζk q) = 1−q7, we have

(q)∞
(ζq)∞ (q/ζ)∞

= (q)∞∏
|k|63(ζk q)∞

· (ζ−3q)∞ (ζ−2q)∞ (q)∞(ζ2q)∞ (ζ3q)∞

= 1

(q7; q7)∞
· (q)∞ (ζ2q)∞ (ζ−2q)∞ · (q)∞ (ζ3q)∞ (ζ−3q)∞,

where by Jacobi’s triple product identity,

(q)∞ (ζk q)∞ (ζ−k q)∞ = ∑
m>0

(−1)m ζkm q
m(m+1)

2 · 1−ζk(2m+1)

1−ζk
, (ek )

for k = 2,3. Hence an arises in the product (e2) · (e3) from terms indexed by m,m′ such that
m(m+1)

2 +m′(m′+1)
2 ≡ 5 mod 7, that is m ≡ m′ ≡ 3 (as seen in a previous exercise). But then 2m+1 ≡

0 mod 7, so 1−ζk(2m+1) = 0 and these terms are 0.

Step 2. Recalling the bivariate generating function for the crank, we have

(q)∞
(ζq)∞ (q/ζ)∞

−1+ (
1−ζ−ζ2)q = ∑

n>2
m∈Z

M(m,n)ζm qn

= ∑
n>2
m∈Z

6∑
k=0

M(7m +k,n)ζ��7m+k qn

= ∑
n>2

(
6∑

k=0
M(k,7,n)ζk

)
qn .

By the first step, the coefficient in q7n+5, n > 0, of the left-hand side is zero. We deduce that ζ is
a root of the polynomial

fn(X ) :=
6∑

k=0
M(k,7,7n +5) X k ∈Z[X ].

Since deg fn 6 6 and µ(X ) := 1+ X + X 2 +·· ·+ X 6 is the minimal polynomial of ζ, there exists a
constant Cn ∈Z such that fn(X ) =Cnµ(X ), which proves that

M(0,7,7n +5) = ·· · = M(6,7,7n +5) (=Cn). ■
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