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Abstract

We introduce the maximal correlation coefficient R(M1,M2) between two noncommu-
tative probability subspaces M1 and M2 and show that the maximal correlation coeffi-
cient between the sub-algebras generated by sn := x1+. . .+xn and sm := x1+. . .+xm

equals
√

m/n for m ≤ n, where (xi)i∈N is a sequence of free and identically distributed
noncommutative random variables. This is the free-probability analogue of a result by
Dembo–Kagan–Shepp in classical probability. As an application, we use this estimate
to provide another simple proof of the monotonicity of the free entropy and free Fisher
information in the free central limit theorem. Moreover, we prove that the free Stein
Discrepancy introduced by Fathi and Nelson is non-increasing along the free central
limit theorem.
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1 Introduction and main result

Pearson’s correlation coefficient ρ(X1, X2) := cov(X1, X2)/σ(X1)σ(X2) is a standard
measure of (bivariate) dependency. The maximal correlation R(X1, X2) between two
random variables X1 and X2 is then naturally defined as the supremum of ρ(f(X1), g(X2))

over L2-functions f, g.
In 2001, Dembo, Kagan, and Shepp [7] investigated this maximal correlation for the

partial sums Sn := X1 + · · ·+Xn of i.i.d. random variables Xi. Namely, regardless of the
Xi’s distribution, they showed that

R(Sn, Sm) ≤
√
m

n
, m ≤ n,

with equality if σ(X1) <∞.
The aim of this note is to prove the analogous statement in the context of free

probability, a theory which was initiated by Voiculescu (see [17]) in the 1980’s and has
since flourished into an established area with connections to several other fields. We
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Maximal correlation and monotonicity of free entropy and of Stein discrepancy

refer to [10, 12] for an introduction on the subject and an extensive list of references.
Before stating our main result, let us first recall the necessary framework.

Let (M, τ) be a noncommutative, faithful, tracial probability space, that is a unital
∗-algebra M equipped with a ∗-linear form τ : M → C where τ(1) = 1 and for all x, y ∈M ,
τ(xy) = τ(yx) (trace property), τ(x∗x) ≥ 0 (non-negativity), and τ(x∗x) = 0 if and only if
x = 0 (faithfulness). Elements of M are called noncommutative random variables, and
the law of (x1, . . . , xn) ∈Mn is the family (τ(xi1 · · ·xir ) : r ≥ 1, 1 ≤ i1, . . . , ir ≤ n). Finally,
we recall the notion of freeness, which is the counterpart of classical independence: we
say that (unital) sub-algebras M1,M2, . . . ⊆ M are free if “any alternating product of
centered elements is centered”, i.e., τ(x1 · · ·xr) = 0 whenever τ(xj) = 0 for all 1 ≤ j ≤ r
and xj ∈ Mij with i1 6= i2, i2 6= i3, . . . , ir−1 6= ir. In this vein, noncommutative random
variables are free if the respective sub-∗-algebras they span are free.

The inner product
〈x, y〉 := τ(x∗y), (x, y) ∈M2,

confers on M a natural L2-structure with norm ‖x‖2 :=
√
〈x, x〉, so we may w.l.o.g.

consider instead its Hilbert space completion L2(M). More generally, L2(M ′) will denote
the closure in L2(M) of the sub-algebra M ′ ⊆ M . If M ′ = C〈x1, . . . , xn〉 is the sub-∗-
algebra of noncommutative polynomials in x1, . . . , xn ∈M and x∗1, . . . , x

∗
n ∈M , we refer

to L2(M ′) as L2(x1, . . . , xn).
Let cov(x, y) := 〈x− τ(x) · 1, y − τ(y) · 1〉 and σ(x)2 := cov(x, x). Just like in classical

probability, we can define the Pearson correlation coefficient between x and y by

ρ(x, y) :=
cov(x, y)

σ(x)σ(y)
.

Note that we have |ρ(x, y)| ≤ 1 by the Cauchy–Schwarz inequality. Given M1,M2 ⊆ M

two subspaces, we call
R(M1,M2) := sup

M1×M2

ρ

the maximal correlation coefficient between M1 and M2. For M1 = L2(x), M2 = L2(y),
we simply write R(x, y), and we call it the maximum correlation between the noncommu-
tative random variables x and y.

We are now ready to state our main result.

Theorem 1.1. Let (xi)i∈N be a sequence of free, non-zero, identically distributed, non-
commutative random variables, and let sn := x1 + · · · + xn. Then for any m ≤ n, we
have

R(sn, sm) =

√
m

n
.

As in the classical setting, the interesting feature of the above statement is its univer-
sality as it holds regardless of the distribution of the noncommutative random variables.
A possible way to prove the above statement consists of using the microstate approach by
approximating the law of each noncommutative random variable by that of random matri-
ces. One then exploits the multidimensional version of the classical maximal correlation
inequality to apply it for the corresponding random matrices (seen as vectors) before
passing to the limit and deducing the above theorem. The drawback of this approach is
that it won’t allow the extension of Theorem 1.1 to the multidimensional case. Indeed,
by the refutation of Connes embedding problem [11], there are noncommutative random
variables whose joint moments cannot be approximated well by moments of matrices.
This makes it impossible to use the mentioned approach to prove a multidimensional
version of the above theorem. On the contrast, our proof of Theorem 1.1, which is
carried in Section 2, adapts the approach of [7] to a noncommutative setting and is
readily extendable to the multidimensional setting.
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Maximal correlation and monotonicity of free entropy and of Stein discrepancy

A celebrated result of Artstein et al [1] provided a solution to Shannon’s problem
regarding the monotonicity of entropy in the classical central limit theorem. In the
context of free probability, the concept of free entropy and information was developped
by Voiculescu in a series of papers (see for example [20]). Two approaches were given
for the definition of free entropy, referred to as microstates and non-microstates and
denoted by χ and χ∗ respectively (see [12, Chapters 7 and 8]). These two coincide in
the one-dimensional setting, in which case the free entropy of a compactly supported
probability measure µ is given by

χ(µ) = χ∗(µ) :=

∫∫
R2

log |a− b|µ(da)µ(db) +
3

4
+

1

2
log(2π).

It is not known whether χ and χ∗ coincide in the multidimensional setting. Our proof
of the result presented in the sequel extends to the multidimensional case for χ∗ only.
Given a noncommutative probability space (M, τ) and a self-adjoint element z ∈ M ,
we define χ∗(z) as χ∗(µz) where µz denotes the distribution of z, i.e., the probability
measure characterized by

∫
pdµz = τ

(
p(z)

)
for all polynomials p ∈ C[X].

In [15], Shlyakhtenko proved the monotonicity of the free entropy in the free central
limit theorem providing an analogue of the result of [1] in the noncommutative setting.
As an application of our maximal correlation estimate, we recover the monotonicity
property which we state in the next corollary.

Corollary 1.2. Given (xi)i∈N a sequence of free, identically distributed, self-adjoint
random variables in (M, τ), one has

χ∗
(
sm√
m

)
≤ χ∗

(
sn√
n

)
, (1.1)

for every integers m ≤ n.

As in the classical setting, the monotonicity of the entropy follows from that of the
Fisher information. In Section 3, we prove the latter as a consequence of Theorem 1.1.
The idea of using the maximal correlation inequality in this context goes back to Cour-
tade [5] who used the result of Dembo, Kagan, and Shepp [7] to provide an alternative
proof of the monotonicity of entropy in the classical setting.

Formulated alternatively, the above corollary states that given a compactly supported
probability measure µ and positive integers m ≤ n, one has

χ∗(m−1/2∗µ
�m) ≤ χ∗(n−1/2∗µ�n), (1.2)

where � denotes the free convolution operation (so µ�n is the distribution of the sum
of n free copies of an element x with distribution µ), and α∗ is the pushforward operation
by the dilation t 7→ αt. As a matter of fact, it is possible to make sense of µ�t for
all real t ≥ 1 (see [14]). Very recently, Shlyakhtenko and Tao [16] extended (1.2) to
real-valued exponents while providing two different proofs. It would be interesting to
see if the argument in this paper based on maximal correlation could be extended to
cover non-integer exponents.

Another consequence of Theorem 1.1 concerns the monotonicity of the free Stein
discrepancy along the free central limit theorem. Stein discrepancy measures in some
sense how far is a probability measure from another one characterized by some integra-
tion by parts formula. Using the classical maximal correlation inequality, it was proven
by Courtade, Fathi and Pananjady [6] that the Stein discrepancy (relative to the standard
Gaussian measure) is non-increasing in the central limit theorem. The notion of free
Stein discrepancy relative to a semicircular law was introduced by Fathi and Nelson [9].
Recall that a standard semicircular variable S is a self-adjoint element of (M, τ) whose
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Maximal correlation and monotonicity of free entropy and of Stein discrepancy

distribution has density 1
2π

√
4− t2 1[−2,2](t). Analogously to the normal distribution, a

standard semicircular variable S ∈M is characterized by the following integration by
parts formula stating that

〈S, P (S)〉 = 〈1⊗ 1, ∂P (S)〉,

for every polynomial P . Here, ∂ denotes the noncommutative derivative and the right
hand side dot product refers to the dot product in the Hilbert space L2(M) ⊗ L2(M)

(see [12]). Following [9], a free Stein kernel of x ∈M is an element K ∈ L2(M)⊗ L2(M)

such that
〈x, P (x)〉 = 〈K, ∂P (x)〉,

for every polynomial P . It was shown by Cébron, Fathi and Mai [4] that free Stein kernel
always exist if τ(x) = 0. The free Stein discrepancy of x relative to S is then defined as

Σ∗(x | S) = inf
K
‖K − 1⊗ 1‖L2(M)⊗L2(M),

where the infimum is taken over all free Stein kernels K of x. We should note that [9]
introduced the notion of free Stein kernel/discrepancy relative to a general potential
while we will only be dealing with the particular case of the potential t2/2 leading to the
notions stated above.

As an application of our maximal correlation inequality, we obtain the following
corollary extending the aforementioned monotonicity of Stein discrepancy obtained
in [6] to the free setting.

Corollary 1.3. Given (xi)i∈N a sequence of free, centered, identically distributed, self-
adjoint random variables in (M, τ) with unit norm, one has

Σ∗
(
sn√
n

∣∣∣ S) ≤√m

n
Σ∗
(
sm√
m

∣∣∣ S) , (1.3)

for every integers m ≤ n.

Note that taking m = 1 in the above corollary, we obtain that Σ∗
(
n−

1
2 sn | S

)
decays

faster than C/
√
n for some constant C recovering a result of [4]. Similarly to the

previous results of this paper, the proof of the above corollary works verbatim in the
multidimensional setting.

2 Proof of Theorem 1.1

Let us fix x1, x2, . . . ∈M . For every finite set I ⊂ N, we denote

L2
I := L2(xi : i ∈ I) and projI(z) := projL2

I
(z)

the orthogonal projection of z ∈ M onto L2
I , which is nothing else but the conditional

expectation of z given L2
I :

y = projI(z) ⇐⇒ y ∈ L2
I and ∀x ∈ L2

I , τ(xy) = τ(xz).

In particular projI(z) = z if z ∈ L2
I , and by the trace property

projI(xzy) = x projI(z)y for all x, y ∈M ∩ L2
I , z ∈M . (2.1)

Note that proj∅(z) = τ(z) · 1 and projJ ◦ projI = projJ for every J ⊆ I (tower property).
When freeness is further involved, we can say a bit more. The following lemma appears
in different forms in the literature ([2], [12, Section 2.5]), we include its proof for
completeness.
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Lemma 2.1. Let I, J ⊂ N be finite sets and suppose (xk : k ∈ I ∪ J) is free. Then:

(i) if z is a (noncommutative) polynomial in variables in C〈xi : i ∈ I〉 and in variables in
C〈xj : j ∈ J \ I〉, then projI(z) is a polynomial in only those variables in C〈xi : i ∈ I〉;

(ii) the projections commute: projI ◦ projJ = projI∩J .

Proof. (i) By linearity of projI , we may suppose without loss of generality that z =

a1 · · · ar with each ak in C〈xi : i ∈ I〉 or C〈xj : j ∈ J \ I〉. From the moment-cumulant
formula [12, Definition 9.2.7] w.r.t. the conditional expectation projI , we can write

projI(z) :=
∑

π∈NC(r)

κIπ(a1, . . . , ar),

where the summation ranges over all non-crossing partitions π ∈ NC(r) of {1, . . . , r} and
the κIπ are nestings (consistently with the blocks of π) of the free (conditional) cumulants
κIn : Mn → L2

I (which can be defined inductively). For instance, if

r = 12, π =
1 2 3 4 5 6 7 8 9 10 11 12

,

then

κIπ(a1, . . . , ar) = κI2

(
a1 · κI2(a2, a3) · κI3(a4, a5, a6), a7

)
· κI1(a8) · κI2

(
a9 · κI2(a10, a11), a12

)
.

As the bimodularity property (2.1) extends to conditional cumulants [12, Remark 9.1)],
each of the innermost cumulants κIs is in the form

b0 · κIs
(
n1 · b1, n2 · b2, . . . , ns

)
· bs,

where s ∈ N is some integer and the bi’s (resp. nj ’s) are (possibly constant) polynomials
in the subset of the variables a1, . . . , ar that belong to C〈xi : i ∈ I〉 (resp. C〈xj : j ∈ J \ I〉).
We now invoke [13, Theorem 3.6] with F := τ |L2

I
and the sub-algebra N := C〈xj : j ∈ J \I〉

free from B := L2
I over D := C · 1 to see that the κIs term reduces to a constant:

κIs(n1 · b1, n2 · b2, . . . , ns) = τ(b1) · · · τ(bs−1) · κs(n1, n2, . . . , ns) ∈ C,

where κs is the (unconditionned) cumulant Ms → C. By multilinearity of the cumulants,
the outer nestings of κI· remain in the same form, and reducing them successively thus
shows that each term κIπ(a1, . . . , ar) is in fact a polynomial only in the subset of the
variables a1, . . . , ar that belong to C〈xi : i ∈ I〉. This proves the claim.

(ii) Clearly τ
(
x projI ◦ projJ(z)

)
= τ

(
projI(projJ(xz))

)
= τ(xz) for all x ∈ L2

I∩J , so
we only need to check that projI

(
projJ(z)

)
∈ L2

I∩J . By a closure argument, we
may suppose that projJ(z) belongs to C〈xj : j ∈ J〉. In this case projI

(
projJ(z)

)
∈

C〈xk : k ∈ I ∩ J〉 ⊆ L2
I∩J by the previous point.

We now set, for every z ∈M ,

zI :=
∑
J⊆I

(−1)|I|−|J| projJ(z) ∈ L2
I , (2.2)

where | · | is the cardinal notation. The following Efron–Stein (a.k.a. ANOVA) decomposi-
tion will play a crucial role in the proof of Theorem 1.1. Its use in free probability seems
new (to the best of the authors’ knowledge) and may be of other independent interest.
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Lemma 2.2. For every finite set I ⊂ N,

projI(z) =
∑
J⊆I

zJ .

Proof. We repeat in a compact way the argument of Efron and Stein [8]:∑
J⊆I

zJ =
∑
J⊆I

∑
K⊆J

(−1)|J|−|K| projK(z)

=
∑
K⊆I

 ∑
K⊆J⊆I

(−1)|J|−|K|


︸ ︷︷ ︸

= (1− 1)|I\K|

projK(z)

= projI(z).

The elements zJ will be orthogonal thanks to this direct consequence of Lemma 2.1:

Lemma 2.3. Suppose that x1, x2, . . . are free, and let I, J ⊂ N be finite sets such that
I \ J 6= ∅. Then projJ(zI) = 0 for every z ∈M . In particular, zI is orthogonal to zJ ∈ L2

J .

Proof. Apply Lemma 2.1 and gather the subsets K ⊆ I that have same intersection
L := J ∩K with J :

projJ(zI) =
∑
K⊆I

(−1)|I|−|K| projJ ◦projK(z)

=
∑

L⊆I∩J

(−1)|I|−|L|

 ∑
K⊆I\J

(−1)|K|


︸ ︷︷ ︸

=(1−1)|I\J|

projL(z)

= 0.

To prove Theorem 1.1 we shall finally exploit that the partial sum sn := x1 + · · ·+ xn
is symmetric in (x1, . . . , xn). Our next proposition is tailored for this purpose.

Proposition 2.4. Suppose that x1, . . . , xn are free and identically distributed. Then for
every symmetric polynomial z = p(x1, . . . , xn) in x1, . . . , xn and every I ⊆ {1, . . . , n}, the
pair (zI , z

∗
I ) has the same distribution as (zI′ , z

∗
I′) where I ′ := {1, . . . , |I|}.

Consequently, if τ(z) = 0, then

∥∥projI(z)
∥∥
2
≤
√
|I|
n
‖z‖2.

Proof. Let m = |I| and let ς be a permutation of {1, . . . , n} mapping I ′ to I. Since p is
symmetric, we can write z = p(x1, . . . , xn) = p(xς(1), . . . , xς(n)). By Lemma 2.1, we see
from its definition in (2.2) that zI is a certain polynomial q, in the xi, i ∈ I, that is

zI = zς(I′) = q(xς(1), . . . , xς(m)).

Now the xi’s are free and identically distributed, so the relabelling shows that

zI′ = q(z1, . . . , zm)

with the same polynomial q, and thus the pairs

(zI , z
∗
I ) = (q(xς(1), . . . , xς(m)), q(xς(1), . . . , xς(m))

∗)
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and

(zI′ , z
∗
I′) = (q(x1, . . . , xm), q(x1, . . . , xm)∗)

have the same moments. In particular ‖zI‖2 = ‖zI′‖2, and the stated inequality becomes
clear by combining this with Lemmas 2.2 and 2.3:∥∥projI(z)

∥∥2
2

=
∑
J⊆I

‖zJ‖22

=

m∑
k=1

(
m

k

)
‖z{1,...,k}‖22

≤ m

n

n∑
k=1

(
n

k

)
‖z{1,...,k}‖22

=
m

n

∥∥proj{1,...,n}(z)
∥∥2
2

=
m

n
‖z‖22,

using that z∅ = 0, that
(
m
k

)
≤ m

n

(
n
k

)
for all 1 ≤ k ≤ m ≤ n, and that z ∈ L2(x1, . . . , xn).

Proof of Theorem 1.1. The lower bound R(sn, sm) ≥
√
m/n is straightforward since, by

freeness, σ(sn)2 = nσ(x1)2 and cov(sn, sm) = σ(sm)2 = mσ(x1)2. For the upper bound,
we must show that ρ(z, z′) ≤

√
m/n for all z ∈ L2(sn) and z′ ∈ L2(sm). W.l.o.g., we may

suppose that τ(z) = τ(z′) = 0 and, by another closure argument, that z is a polynomial
in sn (and thus a symmetric polynomial in x1, . . . , xn). Then by the Cauchy–Schwarz
inequality and Proposition 2.4,

cov(z, z′) = 〈z, z′〉
=
〈
proj{1,...,m}(z), z

′〉
≤
∥∥proj{1,...,m}(z)

∥∥
2
‖z′‖2

≤
√
m

n
‖z‖2 ‖z′‖2

=

√
m

n
σ(z)σ(z′),

and the proof is complete.

3 Monotonicity of the free entropy and free Fisher information

The goal of this section is to prove Corollary 1.2. Let us start by noting that the free
entropy and free Fisher information of a self-adjoint element z ∈M are related through
the integral formula ([18]; see also [12, Chapter 8])

χ∗(z) =
1

2

∫ ∞
0

(
1

1 + t
− Φ

(
z +
√
t S
))

dt+
1

2
log(2π e), (3.1)

where S stands for a standard semicircular variable free from z, and Φ denotes the free
Fisher information. After [18], the free Fisher information of a noncommutative, self-
adjoint random variable z ∈M is defined as Φ(z) := ‖ξ‖22 where the so called conjugate
variable ξ := ξ(z) is any element of L2(z) such that, for every integer r ≥ 0,

τ
(
ξzr
)

=

r−1∑
k=0

τ
(
zk
)
τ
(
zr−1−k

)
. (3.2)
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(If such a ξ does not exist, we set Φ(z) := ∞.) We note from (3.2) that τ(ξ(z)) = 0 and
the homogeneity property Φ(αz) = α−2 Φ(z), α > 0.

In the next Corollary, we show how the monotonicity of the free Fisher information
follows easily from Theorem 1.1.

Corollary 3.1. Let (xi)i∈N be a sequence of free, identically distributed, self-adjoint
random variables in (M, τ) and denote sk := x1 + . . . + xk for every positive integer k.
Then for all positive integers m ≤ n, we have

Φ

(
sn√
n

)
≤ Φ

(
sm√
m

)
.

Proof. Assume the existence of ξ(s1), as otherwise Φ(s1) = ∞ and there is nothing to
prove. According to [12, p. 206], the free sum sn = sm + (sn − sm) admits ξ(sn) =

projL2(sn)(ξ(sm)) as conjugate variable. Therefore, by Theorem 1.1,

Φ(sn) =
∥∥projL2(sn)

(
ξ(sm)

)∥∥2
2

= cov
(

projL2(sn)

(
ξ(sm)

)
, ξ(sm)

)
≤
√
m

n

∥∥projL2(sn)

(
ξ(sm)

)∥∥
2

∥∥ξ(sm)
∥∥
2
,

i.e., Φ(sn) ≤ m
n Φ(sm). We conclude by the homogeneity property.

In view of (3.1) and the divisibility of the semicircular distribution w.r.t. the free
convolution, the above corollary readily implies (1.1), thus proving Corollary 1.2.

4 Monotonicity of the free Stein discrepancy

The goal of this section is to provide a proof of Corollary 1.3. Let us fix m ≤ n and
x1, x2, . . . a sequence of free, centered, identically distributed, self-adjoint random vari-
ables in (M, τ) with unit norm. Let us record the following consequence of Theorem 1.1
which will be used in the sequel.

Lemma 4.1. Let K ∈ L2(sm)⊗ L2(sm) and suppose that 〈K, 1⊗ 1〉 = 1. Then

‖projL2(sn)⊗L2(sn)(K − 1⊗ 1)‖L2(sn)⊗L2(sn) ≤
√
m

n
‖K − 1⊗ 1‖L2(sm)⊗L2(sm).

Proof. Let us denote by Q the projection on 1 and write Pn (resp. Pm) for projL2(sn) (resp.
projL2(sm)). Note that using Theorem 1.1, we have for any b ∈ L2(sm)

‖(Pn −Q)(b)‖22 = 〈(Pn −Q)(b), b−Q(b)〉 ≤
√
m

n
‖(Pn −Q)(b)‖2 ‖b−Q(b)‖2,

which leads to

‖(Pn −Q)(b)‖2 ≤
√
m

n
‖b−Q(b)‖2.

Using that P`Q = QP` = Q for ` ∈ {n,m}, the above relation can be equivalently stated
as

PmPnPm −Q �
m

n
(Pm −Q),

where � denotes the positive semi-definite ordering. Using this we can write

PmPnPm ⊗ PmPnPm −Q⊗Q = PmPnPm ⊗ (PmPnPm −Q) + (PmPnPm −Q)⊗Q

� m

n
Pm ⊗ (Pm −Q) +

m

n
(Pm −Q)⊗Q

=
m

n

(
Pm ⊗ Pm −Q⊗Q

)
,
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where we have also used that PmPnPm � Pm. Note that since 〈K, 1 ⊗ 1〉 = 1, then
K − 1⊗ 1 =

(
Pm ⊗ Pm −Q⊗Q

)
(K). The proof is finished after observing that

(Pm ⊗ Pm −Q⊗Q)Pn ⊗ Pn(Pm ⊗ Pm −Q⊗Q) = PmPnPm ⊗ PmPnPm −Q⊗Q,

and combining it with the above.

Given K ∈ L2(sm)⊗ L2(sm) a free Stein kernel of sm/
√
m, we have by the definition

of K (and homogeneity) that〈 sm√
m
,P (sm)

〉
=
√
m 〈K, ∂P (sm)〉,

for every polynomial P . Since sm and sn − sm are free, then using the intertwining
relation between ∂ and the conditional expectation [19], we can write〈 sm√

m
,P (sn)

〉
=
√
m 〈K, ∂P (sn)〉.

The above relation appears in [3] (before Lemma 2.5 there). Using linearity and that
the xi’s are identically distributed, we get

〈sm, P (sn)〉 = m 〈x1, P (sn)〉 =
m

n
〈sn, P (sn)〉.

Putting the above relations together, we deduce that〈 sn√
n
, P (sn)

〉
=
√
n 〈K, ∂P (sn)〉,

for every polynomial P . This implies that projL2(sn)⊗L2(sn)(K) is a free Stein kernel of
sn/
√
n. Thus, we have

Σ∗
(
sn√
n

∣∣∣ S) ≤ inf
K
‖projL2(sn)⊗L2(sn)(K − 1⊗ 1)‖L2(sn)⊗L2(sn),

where the infimum is taken over all free Stein kernels K ∈ L2(sm)⊗ L2(sm) of sm/
√
m.

Noting that 〈K, 1⊗ 1〉 = 1, then using Lemma 4.1 we deduce

Σ∗
(
sn√
n

∣∣∣ S) ≤√m

n
inf
K
‖K − 1⊗ 1‖L2(sm)⊗L2(sm),

where the infimum is again taken over all free Stein kernels K ∈ L2(sm) ⊗ L2(sm) of
sm/
√
m. Corollary 1.3 then follows after noting that the projection on L2(sm)⊗ L2(sm)

of every free Stein kernel of sm/
√
m is also a free Stein kernel.
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