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THE SUPPORT FUNCTION OF THE HIGH-DIMENSIONAL

POISSON POLYTOPE

PIERRE CALKA AND BENJAMIN DADOUN

Abstract. We study the asymptotic behavior as d → ∞ of the support function

hd
λ(u) := sup

x∈Kd
λ

⟨u, x⟩

in an arbitrary direction u ∈ Sd−1 of the Poisson polytope Kd
λ sampled in the Euclidean ball Bd. We

identify three different regimes (subcritical, critical, and supercritical) in terms of the intensity λ := λ(d) of

the underlying Poisson process and derive in each regime the precise distributional convergence of hd
λ after

suitable scaling. We also treat the same question where the support function is considered over multiple

directions at once. We finally deduce weak counterparts for the radius-vector function of the polytope.

Keywords. Support function; random convex polytopes; phase transition in high dimension.

1. Introduction

The study of high-dimensional polytopes has attracted recent attention in stochastic geometry [4, 16,

22, 15]. This is notably due to the fact that several classical models of random polytopes can be defined

in any dimension and as such, they provide natural examples which might confirm or deny several of the

famous conjectures from high-dimensional convex geometry. For example, the work [17] deals with Poisson

polytopes generated by random hyperplane tessellations in the context of the hyperplane conjecture.

In this paper, we consider the Poisson polytope Kd
λ obtained as the convex hull of a Poisson point

process with intensity λ := λ(d) sampled in the Euclidean, d-dimensional unit ball Bd. Together with

its binomial variant obtained when replacing the Poisson point process with a fixed number n of i.i.d.

variables uniformly distributed in Bd, this model of random polytope has proved to be one of the most

intensively studied in the literature. In particular, several non-asymptotic results are known, including

Wendel’s calculation [30] of the probability that the origin belongs to the random polytope, Efron and

Buchta’s mean-value identities [12, 6] and the recent work due to Kabluchko [20, 21] which provides an

explicit formula for the expectation of the f -vector constituted with the number of k-dimensional facets

of Kd
λ. The asymptotic study of Kd

λ, when the dimension is fixed and the intensity or the number of input

points is large, dates back to the seminal work due to Rényi and Sulanke in dimension two [24, 25] and

has been then carried through many subsequent works which have made explicit limit expectations for

several functionals [27, 28, 23], variance bounds and limit variances [2, 8] and functional limit theorems

for the support function and radius-vector function [7] when the enclosing convex body is a ball.

In the continuation of the early work of Bárány and Füredi [1], who investigated the phase transition

for the probability of having all sampled points in convex position, the high-dimensional study of Kd
λ and

variants has been continued over the last decades [11, 13, 4, 9, 5], with more emphasis on the threshold
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2 P. CALKA AND B. DADOUN

Figure 1. The support function hdλ(u) := OB and the radius-vector function ρdλ(u) := OA

of the polytope Kd
λ in dimension d = 3. The Voronoi flower is the union of the closed balls

(x2 + |x|
2 Bd) where x runs over the vertices of Kd

λ.

for the emergence of significant volumes. Notably, in [5], Bonnet, Kabluchko and Turchi estimated the

asymptotics for different intensity regimes of the mean volume of a more general polytope called the

β-polytope which includes the case of Kd
λ (save for the fact that they consider a binomial version of it). In

particular, they exhibit a critical phase when the logarithm of the number of input points is comparable

to d
2 log d, i.e., they show that the expected normalized volume of the polytope vanishes when the number

of input points increases slower than dd/2, and persists when this number increases faster than dd/2. At

the critical threshold, when the number grows like (d/2x)d/2, they prove a convergence to e−x.

Associated with the (random) polytope Kd
λ are the random processes hdλ and ρdλ, respectively called

the support function and the radius-vector function, given for any direction u in the unit sphere Sd−1 by

hdλ(u) := sup
{
⟨u, x⟩ : x ∈ Kd

λ

}
, (1)

and

ρdλ(u) := sup
{
t > 0 : tu ∈ Kd

λ

}
. (2)

The support function of Kd
λ corresponds to the radius-vector function of its Voronoi flower, see Figure 1.

Even though hdλ and ρdλ are one-dimensional statistics, they are known to fully characterize the convex

body [26, Theorem 1.7.1], so understanding hdλ or ρdλ as d → ∞ already sheds significant light on the

asymptotic geometry of Kd
λ. It appears however that the analysis of the radius-vector function is more

delicate and we mostly focus on the support function in this work.

The distribution of the random variables hdλ(u) and ρdλ(u) does not depend on u by rotational invariance;

we let hdλ := hdλ(u) and ρdλ := ρdλ(u), and consider that u is either fixed in Sd−1 or chosen uniformly at

random in Sd−1 (independently of the Poisson process). Given the following technical assumption on λ,

lim inf
d→∞

λκd
d

> 2, (H)
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where κd := |Bd| is the d-dimensional volume of the unit ball, the random variables hdλ and ρdλ will take

values in [0, 1] with high probability as d→∞ (see Lemma 2.1). This hypothesis means that λκd, i.e., the

mean number of points in Bd of the Poisson process, is asymptotically greater than twice the dimension d.

Our first result identifies the subcritical, critical, and supercritical regimes where hdλ tends either to 0,

to a value in (0, 1), or to 1 as d → ∞, depending on whether log λκd grows slower than, comparably to,

or faster than the dimension d.

Theorem 1.1 (Asymptotic regimes of hdλ). Under Assumption (H), suppose that

x := lim
d→∞

1

d
log λκd

exists in [0,∞]. Then the following holds in probability as d→∞:

hdλ ∼
√

2

d
log λκd, if x = 0,

hdλ →
√
1− e−2x, if x ∈ (0,∞),

1− hdλ ∼
1

2
(λκd)

− 2
d+1 , if x =∞.

Note that Assumption (H) is automatically fulfilled in the critical and supercritical regime (x ∈ (0,∞]).

In addition to Theorem 1.1, we can obtain the distributional fluctuations of hdλ around its limiting

value. Moreover, we can do the same when the support function is considered over several directions at

once. Namely, we let m ≥ 1 be a fixed integer and define

hd,mλ := inf
u∈Sd−1∩Rm

hdλ(u).

Again, by rotational invariance, the distribution of this infimum does not depend on the direction of

the linear m-dimensional section of Sd−1, and we have hd,1λ

(d)
= hdλ. In particular, we expect hd,mλ to

behave like hdλ, i.e., satisfy the exact same conclusions of Theorem 1.1 with the same threshold. This

is confirmed by Theorem 1.2 below which provides a Gumbel limit distribution for a functional of hd,mλ

in the case m = 1 when Assumption (H) is fulfilled and in the case m ≥ 2 when log λκd belongs to the

asymptotic range
(
log d, d

3
2

)
.

Theorem 1.2 (Distributional limit). Let m ≥ 1 be a fixed integer, and let λ := λ(d) > 0 satisfy As-

sumption (H) and either one of the three assumptions (Asub), (Acrit), or (Asup) given in Lemma 4.4

when m ≥ 2. Then there exist two explicit sequences a(d;m) and b(d;m) (given at (38) and (39)

for m ≥ 2, and at (10) and (11) for m = 1) such that

a(d;m)− b(d;m) log
1√

1− (hd,mλ )
2

converges in law as d→∞ towards the standard Gumbel distribution.

Theorem 1.1 is a direct consequence of Theorem 1.2. In particular, the statement of Theorem 1.1 can

be extended to hd,mλ in the case m ≥ 2.

The proof of Theorem 1.2 for m ≥ 2 relies essentially on the ad hoc application of a remarkable result

due to S. Janson on random coverings of a set [18].
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Theorem 1.1 above is clearly reminiscent of [5, Theorem 3.1]. Comparing both results, we observe

that if λ is taken so that log λκd belongs to the asymptotic range [d, d log d), then the expected volume

ratio E |Kd
λ|/κd vanishes as observed in [5], while according to Theorem 1.2, Kd

λ still has long ‘arms’ in

any finite number of independent directions. This confirms the well-known picture of a high-dimensional

convex body which was popularized by Vitali Milman and which looks like a ‘star-shaped body with a

lot of points very far from the origin and lot of points very close to the origin’ [14, Section 2]. Studying

the minimum of the support function over a section of Kd
λ may provide a way of quantifying the size

of the ‘holes’, i.e., estimating the critical dimension under which the support function is close to one in

every direction of the section of Kd
λ and above which we expect to see directions almost unoccupied by

the section of Kd
λ. Unsurprisingly, Theorem 1.2 suggests that as soon as we reach the threshold for the

one-dimensional section given in Theorem 1.1, we expect every section with fixed dimension m to look

like the m-dimensional unit ball. The rest of the study should then lead us to consider m tend to infinity

with d in the supercritical case of Theorem 1.1 in order to decide when exactly the function hd,mλ switches

from being almost equal to 1 to being almost equal to 0. This requires a serious revision of the covering

methods used in the proof of Theorem 1.2 that we leave for further work.

The paper is structured as follows. We start in Section 2 with some asymptotic preliminaries, notably

for the incomplete beta function to which the tail probability of hdλ and hd,mλ is related. As a warm-up,

in Section 3, we establish Theorem 1.2 in the case m = 1 by elementary means, see Theorem 3.2, and

deduce from it Theorem 1.1. Section 4 is devoted to the use of Janson’s covering techniques for proving

Theorem 1.2 in the case m ≥ 2. Finally, in Section 5, we transfer some of our results to the radius-vector

function ρdλ of Kd
λ.

Notation. All asymptotic estimates are w.r.t. the dimension d: g ≫ f (or f ≪ g, or f = o(g)) for

nonnegative sequences f := f(d) and g := g(d) means that f(d) ≤ εg(d) holds for all d sufficiently large

and any ε > 0, while f = O(g) or f ≲ g indicates that f(d) ≤ Cg(d) holds for all d ≥ 1 and some

constant C > 0. We also write f ∼ g if |f − g| ≪ g, and f ≍ g if f ≲ g and g ≲ f .

2. Preliminaries

This section aims at providing an explicit formula for the distribution function of hdλ in terms of the

incomplete beta function. It also paves the way for the asymptotic study of the tail probability of hdλ
and hd,mλ , which is the focus of Sections 3 and 4.

Let Pd
λ, d ≥ 2, be Poisson point processes (embedded in a common abstract probability space (Ω,A,P))

with intensities λ := λ(d) > 0 in Rd. The polytope Kd
λ is defined as the convex hull of Pd

λ ∩ Bd, where

Bd := {x ∈ Rd : |x| ≤ 1} is the Euclidean unit ball of (Rd, ∥ · ∥), with the Euclidean norm ∥ · ∥ derived

from the usual inner product ⟨·, ·⟩. We recall that | · | denotes the d-dimensional Lebesgue measure of Rd.

In both notations ∥ · ∥ and | · |, the dependency on d is implicit.

A priori, the support function hdλ introduced in (1) takes values in {−∞} ∪ (−1, 1), but if λ is not

chosen too small, then the polytope Kd
λ will likely contain the origin, which means that hdλ ≥ 0.

Lemma 2.1 (Containing the origin). If Assumption (H) holds, then P(0 ∈ Kd
λ)→ 1 as d→∞.

If however lim supd→∞
λκd
d < 2, then P(0 ∈ Kd

λ)→ 0 as d→∞.
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Proof of Lemma 2.1. The number N := N(d) of points in Kd
λ has a Poisson distribution with mean λκd.

Further, conditional on N , those points have a symmetric distribution in Rd. It follows from Wendel’s

formula [30] that

P
(
0 /∈ Kd

λ

∣∣ N) = 1{N≤d}+1{N>d} 2
−(N−1)

d−1∑
k=0

(
N − 1

k

)

= 1− 1{N>d} 2
−(N−1)

N−1∑
k=d

(
N − 1

k

)
= 1− P(SN−1 ≥ d | N),

where Sn, n ≥ 0, are Binomial(n, 12) random variables independent of N . Hence

P
(
0 ∈ Kd

λ) = P(SN−1 ≥ d).

By the law of large numbers, P(SN−1 ≥ d)→ 1 as d→∞ if

lim inf
d→∞

1

d
E[SN−1] > 1,

that is (since E[SN−1] =
λκd−1

2 ), if λκd ≥ (2 + ε)d holds for some ε > 0 and all d sufficiently large;

similarly, P(SN−1 ≥ d)→ 0 if λκd ≤ (2− ε)d holds for some ε > 0 and all d sufficiently large. (In fact, by

classical large deviation theory, these two convergences occur exponentially fast.) □

Taking Assumption (H) for granted, we thus have 0 ≤ hdλ ≤ 1 w.h.p. as d→∞. Now,

P
(
hdλ ≤ r

)
= P

(
hdλ(u) ≤ r

)
, 0 ≤ r ≤ 1,

for, e.g., u := (1, 0, . . .) ∈ Sd−1; we compute this probability as

P
(
Pλ ∩ Cd(r;u) = ∅

)
= e−λ|Cd(r;u)|,

where the spherical cap Cd(r;u) := {x ∈ Bd : ⟨u, x⟩ > r} has volume

|Cd(r;u)| = κd−1

ˆ 1

r
(1− t2)

d−1
2 dt =

κd−1

2

ˆ 1−r2

0
v

d−1
2 (1− v)−

1
2 dv, (3)

with the last integral resulting from the change of variable v ← 1− t2. Hence

P
(
hdλ ≤ r

)
= exp

(
−λκd−1

2
B
(
1− r2; d+1

2 , 12
))

, (4)

where

B(x; p, q) :=

ˆ x

0
vp−1(1− v)q−1 dv, x ∈ [0, 1], p, q > 0,

is the lower incomplete beta function (the complete beta function is B(p, q) := B(1; p, q)). We will see

in Section 4 that when considering the support function over m ≥ 2 directions at once, the distribution

function of the infimum hd,mλ also involves this special function (with the third parameter q = 1
2 replaced

by q = m
2 ) as well as the volume of unit balls. Thus, the asymptotic behavior of hdλ and of hd,mλ will depend

on the interplay between the intensity λ := λ(d) and the two quantities κn and B(x; p, q), where n, x and p

may depend on the dimension d.
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Regarding κd, we will essentially use the asymptotic relation

κd−1 = κd

√
d

2π

[
1 +O

(
1

d

)]
, (5)

which is easily derived from the well-known formula

κd =
π

d
2

Γ
(
1 + d

2

) (6)

and Stirling’s formula for Euler’s gamma function Γ (see, e.g., [29, (3.24)]). As for the incomplete beta

function, we can derive basic first-order estimates:

Lemma 2.2 (Estimates of the incomplete beta function). Let p, q > 0. Then for any x ∈ (0, 1) such that

(p+ q)x < p+ 1,

the ratio B(x; p, q)
/ xp(1− x)q−1

p
lies between 1 and

1

1− q−1
p+1 ·

x
1−x

.

In particular, when x ∈ (0, 1) and p, q > 0 are three sequences indexed by d:

1. If p≫ |q − 1|x
1− x

, then

B(x; p, q) =
xp(1− x)q−1

p

[
1 +O

(
|q − 1|x
p(1− x)

)]
.

2. If p≫ |q − 1|
1− x

, then

B(x; p, q)

B(p, q)
=

xp[(1− x)p]q−1

Γ(q)

[
1 +O

(
|q − 1|
p(1− x)

)]
.

Proof. For x ∈ (0, 1) we have from [29, (11.33)] the series representation

B(x; p, q) =
xp(1− x)q

p

∞∑
n=0

(p+ q)n
(p+ 1)n

xn,

where the ratio of Pochhammer symbols

(p+ q)n
(p+ 1)n

:=
p+ q

p+ 1
· p+ q + 1

p+ 2
· · · p+ q + n− 1

p+ n

belongs to
[
1, ( p+q

p+1)
n
]
if q ≥ 1, and to

[
(p+q
p+1)

n
, 1
]
if 0 < q < 1. Now if (p+ q)x < p+ 1, then

∞∑
n=0

(
p+ q

p+ 1

)n
xn =

1

1− p+q
p+1x

=
1

1− x
· 1

1− q−1
p+1 ·

x
1−x

,

hence the lower and upper bounds on B(x; p, q)/xp(1−x)q−1

p . The first stated asymptotic estimate is an

immediate consequence of these bounds, while the second one follows from the first one combined with

B(p, q) = Γ(q) · Γ(p)

Γ(p+ q)
=

Γ(q)

pq

[
1 +O

(
|q − 1|

p

)]
,

see, e.g., [29, (3.31)]. □
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3. The support function in one direction

We are now ready to establish Theorem 1.1 as well as Theorem 1.2 in the case m = 1: we do so

by recalling the distribution function (4) of the support function hdλ, then plug in asymptotics for the

incomplete beta function (Lemma 2.2) and for the volume of the Euclidean unit balls (5).

To start with, we identify the limit of hdλ in probability in Lemma 3.1. We then derive in Theorem 3.2 a

convergence in distribution for a proper renormalized version of hdλ. We finally use Theorem 3.2 to prove

Theorem 1.1 as well as Theorem 1.2 in the case m = 1.

Lemma 3.1 (Limit in probability of the support function). Under the assumption of Theorem 1.1,

lim
d→∞

hdλ =
√

1− e−2x, in probability

(with the convention e−∞ = 0).

Proof. We start by applying Lemma 2.2 with only the second argument of the incomplete beta function

depending on d: for any fixed r ∈ (0, 1),

B
(
1− r2; d+1

2 , 12
)
=

2(1− r2)
d+1
2

rd

[
1 +O

(
1

d

)]
.

Inserting this and the other estimate (5) into (4) then yields

−logP
(
hdλ ≤ r

)
=

λκd(1− r2)
d+1
2

r
√
2πd

[
1 +O

(
1

d

)]

= exp

{
log λκd +

d+ 1

2
log(1− r2)− log r

√
2πd+O

(
1

d

)}
(7)

= exp

{
d

(
log λκd

d
+ log

√
1− r2 + o(1)

)}
.

Since log λκd
d → x ∈ [0,∞] as d→∞, the change of sign in this exponent provides the required threshold,

i.e.,

lim
d→∞

P
(
hdλ ≤ r

)
=

0 if r <
√
1− e−2x,

1 if r >
√
1− e−2x.

This proves the convergence in distribution of hdλ towards the constant
√
1− e−2x, which is equivalent to

the convergence in probability to the same limit. □

By also letting the first argument of the incomplete beta function depend on d, a deeper application

of Lemma 2.2 enables us to complete the proof of Theorems 1.1 and 1.2 in the case m = 1.

Theorem 3.2 (Convergence in distribution of the renormalized support function). Under the assumption

of Theorem 1.1, the random variable

d

log
1√

1− (hdλ)
2
− 1

d+ 1
log λκd

+ log
√

m(d)
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converges towards the standard Gumbel distribution as d→∞, where

m(d) :=


4π log λκd, in the subcritical regime log λκd ≪ d,

2πd(1− e−2x), in the critical regime log λκd ∼ dx with x ∈ (0,∞),

2πd
(
1− (λκd)

− 2
d+1

)
, in the supercritical regime log λκd ≫ d.

Remark 3.3. In the critical regime where log λκd = dx+y+o(1) with x ∈ (0,∞) and y ∈ R, the theorem

reads

d

log
1√

1− (hdλ)
2
− x

+ log
√

2πd(1− e−2x) ====⇒
d→∞

G+ y,

that is,

√
2πd e−dx

(
1− (hdλ)

2
)− d

2
====⇒
d→∞

eG+y

√
1− e−2x

,

for some standard Gumbel variable G.

Proof. We apply Lemma 2.2 again by letting r ∈ (0, 1) in the previous proof depend on d. If dr2 ≫ 1

holds, then as a replacement of (7) we may write

−logP
(
hdλ ≤ r

)
= exp

{
log λκd +

d+ 1

2
log(1− r2)− log r

√
2πd+ o(1)

}
. (8)

Fix τ ∈ R and choose r := r(d; τ) as the (asymptotically unique) solution to the equation

log λκd +
d+ 1

2
log(1− r2)− log r

√
2πd = −τ, namely

(1− r2)
d+1
2

r
=

√
2πd

λκd
e−τ . (9)

In particular, under Assumption (H),

−d+ 1

2
log(1− r2) ≥ log

λκd√
2πd

+ τ →∞,

so that, indeed, dr2 ≫ 1 and (8) is true. Inserting (9) there then yields

lim
d→∞

P
(
hdλ ≤ r

)
= e− e−τ

,

which is the c.d.f. of the standard Gumbel distribution. Now, we observe that

P
(
hdλ ≤ r

)
= P

[
−d+ 1

2
log
(
1− (hdλ)

2
)
− log

λκd

r
√
2πd

≤ τ

]

= P

d
log

1√
1− (hdλ)

2
− 1

d+ 1
log λκd

+
log r
√
2πd

1 +O
(
1
d

) ≤ τ +O

(
1

d

),
and, from (9),

1− r2 = r
2

d+1 (λκd)
− 2

d+1

[
1 +O

(
log d

d

)]
,

with

1

d
log r =

1

d
log λκd +O

(
−log

(
1− r2

))
.
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It easily follows that 
r2 ∼ 2

d
log λκd, if log λκd ≪ d,

r2 → 1− e−2x, if log λκd ∼ dx with x ∈ (0,∞),

1− r2 ∼ (λκd)
− 2

d+1 , if log λκd ≫ d,

which completes the proof. □

Theorem 3.2 and Lemma 3.1 allow us to complete the proof of Theorem 1.1 and of Theorem 1.2 in

the case m = 1.

Proof of Theorem 1.1. It follows from Theorem 3.2 that

d

log
1√

1− (hdλ)
2
− 1

d+ 1
log λκd

+ log
√

m(d) = OP(1),

where X(d) = OP(1) means that limA→∞ lim supd→∞ P(|X(d)| > A) = 0. Multiplying this equation

by −2
d and taking the exponential function, we deduce that(

1− (hdλ)
2
)
(λκd)

2
d+1 = 1 +

1

log d
·OP(1),

where we discarded the m(d)−
1
d term because m(d) = O(d). In the subcritical regime log λκd ≪ d, we

obtain that in probability as d→∞,

hdλ ∼
√

2

d
log λκd

(because then 1− (λκd)
2

d+1 ∼ −2
d log λκd). In the supercritical regime log λκd ≫ d, we get instead

1− hdλ ∼
1

2
(λκd)

− 2
d+1

(because 1+hdλ → 2 in probability). This together with Lemma 3.1 completes the proof of Theorem 1.1.

□

Proof of Theorem 1.2, case m = 1. Theorem 3.2 establishes Theorem 1.2 in the case m = 1, with

a(d; 1) := log
√

m(d)− d

d+ 1
log λκd, (10)

and

b(d; 1) := −d. (11)

□
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4. The infimum of the support function over multiple directions

In this section, we extend the study of the asymptotic behavior of the support function when considered

over several directions simultaneously. Namely, we consider

hd,mλ := inf
u∈Sd−1∩Rm

hdλ(u),

where m ≥ 2 is a fixed integer. Section 4.1 consists in reinterpreting the distribution of hd,mλ in terms of a

covering probability. We then present in Section 4.2 a remarkable covering technique due to Janson [18]

which we specialize to our setting. This finally allows us to prove Theorem 1.2 in the case m ≥ 2.

4.1. Reduction to a covering problem. We start by relating the tail event hd,mλ ≥ r to the event of

covering the sphere Sm−1 := {y ∈ Rm : ∥y∥ = 1} with i.i.d. geodesic balls. In this direction, we write

vSm−1(dx) for the (m− 1)-dimensional surface measure on Sm−1 (so that vSm−1(Sm−1) = mκm), and

BSm−1(x, θ) :=
{
y ∈ Rm : ∥y∥ = 1 and ⟨x, y⟩ > cos θ

}
for the geodesic ball with center x ∈ Sm−1 and radius θ ∈ (0, π] in Sm−1.

Lemma 4.1 (Covering the sphere). For every r ∈ (0, 1), we have hd,mλ ≥ r if and only if

Sm−1 =
⋃
i

BSm−1(xi, aρi), (12)

where

a :=
1√
d

√
1− r2

r
, (13)

and the centers and radii (xi, ρi) arise as the atoms of a Poisson point process on Sm−1 × (0,∞) whose

intensity Λd,m
r vSm−1(dx)⊗ P(Rd,m

r ∈ dρ) is given by

Λd,m
r := λκd ·

B
(
1− r2; 1 + d−m

2 , m2
)

B
(
1 + d−m

2 , m2
) , (14)

and, for every ρ > 0,

P(Rd,m
r > ρ) :=

B
(
1− r2 cos−2(aρ); 1 + d−m

2 , m2
)

B(1− r2; 1 + d−m
2 , m2 )

1{ρ< arccos r
a }. (15)

Proof. Indeed, hd,mλ ≥ r if and only the sphere rSm−1 is entirely covered by the trace onto Rm of the

Voronoi flower associated with Kd
λ, that is, by the spherical patches(

X ′

2
+
∥X ′∥
2

Bm

)
∩ rSm−1 = rBSm−1

(
X ′

∥X ′∥
, RX′

)
,

where RX′ := arccos( r
∥X′∥) and the points X ′ are the orthogonal projections of the points in Pd

λ ∩ R
d,m
r ,

with

Rd,m
r :=

{
x ∈ Bd : x21 + · · ·+ x2m ≥ r2

}
;

see Figure 2. Considering a point X ∈ Pd
λ ∩R

d,m
r , the norm of its orthogonal projection X ′ onto Rm has

a law given by

E
[
g
(
|X ′|2

)]
=

´ 1
r2 t

m
2
−1(1− t)

d−m
2 g(t) dt

B
(
1− r2; 1 + d−m

2 , m2
) , (16)
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×O

Bd ∩ Rm

r∥X ′∥

• X ′

θ

Figure 2. Projection onto Rm. We have hd,mλ ≥ r if and only if the sphere rSm−1 (dashed)

is covered by the union of its intersection with each petal (in red) of the Voronoi flower

whose corresponding vertex lies in Rd,m
r . Each projected vertex X ′ yields a geodesic ball

(hatched) of radius θ := arccos(r/|X ′|).

for any measurable function g : [0,∞) → [0,∞). We further note that the projections X ′ are identically

distributed, with X ′/∥X ′∥ uniform on Sm−1 (by rotational invariance). Letting Rd,m
r denote a random

variable with law

Rd,m
r

(d)
=

1

a
RX′ =

1

a
arccos

r

∥X ′∥
, where a :=

1√
d

√
1− r2

r
, (17)

we deduce that hd,mλ ≥ r if and only if Sm−1 is covered by the geodesic balls BSm−1(x, aρ), whose centers

and radii (x, ρ) arise from a Poisson point process on Sm−1 × (0,∞) with intensity

λ · |Rd,m
r |vSm−1(dx)⊗ P(Rd,m

r ∈ dρ).

Now, the stated distribution function (15) of Rd,m
r easily follows from (16) and (17):

P(Rd,m
r > ρ) = P

(
∥X ′∥2 > r2 cos−2(aρ)

)
=

´ 1
r2 t

m
2
−1(1− t)

d−m
2 1{t>r2 cos−2(aρ)} dt

B
(
1− r2; 1 + d−m

2 , m2
)

=
B
(
1− r2 cos−2(aρ); 1 + d−m

2 , m2
)

B(1− r2; 1 + d−m
2 , m2 )

1{ρ< arccos r
a }.
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Furthermore,

λ · |Rd,m
r | = λ

˙
1{x2

1+···+x2
m≥r2} κd−m

(
1− x21 − · · · − x2m

)d−m
2 dx1 · · · dxm

=
1

2
λmκmκd−m

ˆ 1

r2
t
m
2
−1(1− t)

d−m
2 dt

= λκd ·
B
(
1− r2; 1 + d−m

2 , m2
)

B
(
1 + d−m

2 , m2
)

=: Λd,m
r ,

where the second equality comes from the use of spherical coordinates, and the third equality is due to the

expression (6) for the volume of Euclidean balls and to the relation B(a, b) = Γ(a)Γ(b)/Γ(a+ b) between

the beta and gamma functions. □

We are therefore reduced to understanding the probability as d→∞ of the covering event (12). As we

will see in the next section, it turns out that Janson [18] derived precise estimates for the probability of

covering a manifold of fixed dimension using a Poisson process of i.i.d. patches whose intensity Λ increases

to infinity as the scale parameter a decreases to 0. We conclude this section by showing that the random

radii Rd,m
r , r ∈ (0, 1), have a common limit distribution as d → ∞. This convergence will hold with

respect to the Wasserstein metric W1, which for two real random variables X and Y is given by

W1(X,Y ) :=

ˆ ∞

0

∣∣P(X > t)− P(Y > t)
∣∣ dt.

We recall that the W1-convergence amounts to the convergence in distribution together with the conver-

gence of the first moment.

Lemma 4.2 (Convergence of the patch radii). Let m ≥ 2 be a fixed integer, let r := r(d) ∈ (0, 1) and let

a :=
√
1− r2/r

√
d. Suppose that

d≫ 1

r2
+ log2

1

1− r
, or equivalently, a+

1

d
log2

1

a
→ 0. (18)

Then

W1(R
d,m
r , R) = O

(
1

dr2
log(dr2)

)
, (19)

where R is a standard Rayleigh random variable, with Lebesgue density ρ 7→ ρ e−ρ2/2 on (0,∞) and

moments

ERk = 2
k
2 Γ

(
1 +

k

2

)
, k ∈ Z+. (20)

Moreover, the convergence holds with the following upper bound: for every w > 0 and all d sufficiently

large,

sup
ρ>0

P(Rd,m
r > ρ)

P
([

1 + w
log 1

a

]
R > ρ

) ≤ 1. (21)
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Proof. We observe from (15) that

P(Rd,m
r > ρ) =

B
(
1− r2 cos−2(aρ); 1 + d−m

2 , m2
)

B(1− r2; 1 + d−m
2 , m2 )

1{ρ< arccos r
a }

is a positive and continuously differentiable of x := tan−2(aρ) = cos−2(aρ)−1 on the domain (0, r−2−1).

Letting F (x) := log B(1− r2 − r2 x; 1 + d−m
2 , m2 ) allows us to write logP(Rd,m

r > ρ) = F (x) − F (0), so

that by the mean value theorem there exists x̄ ∈ (0, x) with

logP(Rd,m
r > ρ) = xF ′(x̄)

= −r2 x
(
1− r2 − r2x̄

) d−m
2 rm−2 x̄

m
2
−1

B(1− r2 − r2 x̄; 1 + d−m
2 , m2 )

.

Applying Lemma 2.2 for the denominator, we get (introducing r−2 − 1 = da2)

logP(Rd,m
r > ρ) = −

(
1 +

d−m

2

)
r2 x

1− r2 − r2 x̄

[
1 +O

(
1− r2 − r2 x̄

dr2(1 + x̄)

)]

= − x

2a2

(
1− x̄

da2

)−1
[
1 +O

(
1

dr2

)]
,

where the error term is uniform in x ∈ (0, r−1 − 1]. Recalling x̄ < x = tan2(aρ) and using the inequality

y < tan y < y(1− 4
π2 y

2)
−1

(see, e.g., [3]) with y := aρ ∈ (0, arccos r) ⊂ (0, π2 ), we then obtain

−ρ2

2

[(
1− 4a2ρ2

π2

)2
− ρ2

d

]−1[
1 +O

(
1

dr2

)]
≤ logP(Rd,m

r > ρ) ≤ −ρ2

2

[
1 +O

(
1

dr2

)]
, (22)

uniformly in 0 ≤ ρ < A, where

A :=
arccos r

a
= r
√
d
arccos r√
1− r2

≍ r
√
d

tends to infinity by (18). Observing that the tail of the Rayleigh variable R fulfills logP(R > ρ) = −ρ2

2 ,

it easily follows that, for B := log(dr2),

P(Rd,m
r > ρ)

P(R > ρ)
1{0≤ρ<

√
B} = 1 +O

(
B2 e−B

)
,

and

P(Rd,m
r > ρ)

P(R > ρ)
1{

√
B≤ρ<A} = O(1),
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where the error terms do not depend on ρ. We deduce that

W1(R
d,m
r , R) =

ˆ ∞

0

∣∣∣P(Rd,m
r > ρ)− P(R > ρ)

∣∣∣ dρ
≤
ˆ √

B

0

∣∣∣P(Rd,m
r > ρ)− P(R > ρ)

∣∣∣ dρ+ ˆ ∞

√
B

(
P(Rd,m

r > ρ) + P(R > ρ)
)
dρ

= O
(
B2 e−B

)
+O(1)

ˆ ∞

√
B
e−

ρ2

2 dρ

= O

(
1

dr2
log2(dr2)

)
,

as stated. Finally, since (
1 +

w

log 1
a

)− 1
2

= 1 +O(a2) = 1 +O

(
1

dr2

)
for every fixed w > 0, we also obtain from the upper bound in (22) that (21) holds. For the moments of

the standard Rayleigh distribution, see, e.g., [19, § 18.3]. □

4.2. Application of Janson’s covering result. In [18], Janson showed that the renormalized number

of random “small sets” needed to cover a fixed “big set” converges, when properly normalized, to the

Gumbel extreme value distribution as the “size” of the small sets tends to zero. More precisely, let the

big set be a C2, D-dimensional compact Riemannian manifold M with volume measure vM , and suppose

that the small sets are i.i.d. geodesic balls, that is, they are all of the form BM (xi, aρi), i ≥ 1, where a > 0

is a vanishing scale parameter, and the centers and radii (xi, ρi) arise as the atoms of a Poisson point

process on M × (0,∞) with intensity ΛvM (dx) ⊗ P(R ∈ dρ), for some positive random variable R and

Λ := Λ(a)→∞ as a→ 0. Then, denoting by Cover(Λ, R, a;M) the event

M =
⋃
i≥1

BM (xi, aρi),

Janson [18, Lemma 8.1] proved that

lim
a→0

P
(
Cover(Λ, R, a;M)

)
= e− e−τ

, (J)

under the following two conditions:

ERq <∞ for some q > D, (J1)

and

J(Λ, R, a;M) := baDvM (M) Λ− log
1

baD
−D log log

1

baD
− logα(R) −−−→

a→0
τ ∈ R, (J2)

with

b := b(R;M) :=
πD/2 ERD

Γ(1 + D
2 )vM (M)

, (Jb)
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and [18, Eq. (9.24)]

α(R) :=
1

D!

(√
π Γ(1 + D

2 )

Γ(D+1
2 )

)D−1 (
ERD−1

)D
(ERD)D−1

. (Jα)

In view of Lemma 4.1, we would like to estimate the probability of the event Cover(Λd,m
r , Rd,m

r , a;Sm−1),

where the scale parameter a :=
√
1− r2/r

√
d vanishes as d → ∞. Although Janson’s original result is

stated only when the distribution of the random radius does not depend on a, we show in Lemma 4.3

below that it still holds when we use the radii Rd,m
r instead of their Rayleigh limit R in Lemma 4.2. This

is done thanks to a slight improvement of Janson’s result, Proposition A, which may be of independent

interest (see Appendix).

Lemma 4.3 (Application of the extension of Janson’s result). With the notation of Lemmas 4.1 and 4.2,

suppose (J2) holds with Λ := Λd,m
r and M := Sm−1 (i.e., J

(
Λd,m
r , R, a; Sm−1

)
→ τ), and suppose also

that (18) holds. Then

lim
d→∞

P
(
Cover(Λd,m

r , Rd,m
r , a; Sm−1)

)
= e− e−τ

.

Proof. We apply Proposition A in Appendix. We have (J2) for Λ := Λd,m and D := m− 1, and also (J1)

because all moments of the Rayleigh distribution are finite. It remains to show that the two conditions

of Proposition A related to Ra := Rd,m
r are satisfied. The first one is (21) given by Lemma 4.2. For the

second one, we can take εa := log−
3
4 ( 1a). Indeed, we have,

P(R ≤ εa) = 1− exp

(
−ε2a

2

)
= O(ε2a) = o

(
1

log 1
a

)
.

Further, (19) gives

W1(R
d,m
r , R) = O

(
1

dr2
log2(dr2)

)
= o

(
εa

log 1
a

)
,

since, by (18),

1

dr2
log2(dr2)

log 1
a

εa
=

[(
1

dr2

)
log2(dr2)

] 1
8

·
[
1

d
log2

1

a
+ a2 log2

1

a

] 7
8

→ 0. □

The applicability of Lemma 4.3 is done in Lemma 4.4 below. Plugging in the expressions of ERk

in (20) into (Jα), we can see that α(R) simplifies to

α := α(R) =
π

m−1
2 Γ(m+1

2 )

(m− 1)!
=

π
m
2

2m−1 Γ(m2 )
, (23)

by an application of Legendre’s duplication formula. Similarly, using also the expression of κm in (6) and

the fundamental property Γ(1 + m
2 ) =

m
2 Γ(m2 ), the expression of b(R;M) in (Jb) reduces to

b := b(R;Sm−1) =
(
√
2π)

m−1
Γ(m2 )

2π
m
2

=
2

m−3
2 Γ(m2 )√

π
. (24)



D
ra
ft

Fe
br
ua
ry
20
24

16 P. CALKA AND B. DADOUN

Lemma 4.4 (Verification of Janson’s condition (J2) and of (18)). Let m ≥ 2 be a fixed integer, and

suppose that one of the three assumptions (Asub), (Acrit), or (Asup) below occurs:

log2 d≪ log λκd ≪ d, (Asub)

log λκd ∼ dx with x ∈ (0,∞), (Acrit)

1≪ 1

d
log λκd −

1

2
log log d≪

√
d. (Asup)

Let α and b as in (23) and (24). Then for every τ ∈ R, there exists r := r(d; τ) > 0 such that, for a := a(d)

and Λd,m
r as in (13) and (14), condition (J2) holds:

J(Λd,m
r , R, a;Sm−1) = bam−1mκmΛd,m

r + log
(
bam−1

)
− (m− 1) log

[
−log

(
bam−1

)]
− logα→ τ. (25)

Furthermore, (18) holds: a+ 1
d log

2 1
a → 0.

Proof. According to (13), we seek r := (1 + da2)
− 1

2 ∈ (0, 1). We start with the following asymptotics

of (14),

Λd,m
r = λκd

(1− r2)
1+ d−m

2 rm−2(d2)
m
2
−1

Γ(m2 )

[
1 +O

(
1

dr2

)]

= λκd d
d
2
ad+2−m(1 + da2)

− d
2

2
m
2
−1 Γ(m2 )

[
1 +O

(
1

d
+ a2

)]
,

obtained by Lemma 2.2, provided that 1
dr2

= 1
d + a2 ≪ 1. In this case,

bam−1mκm Λd,m
r =

√
2π

m−1
2

Γ(m2 )
λκd

a(
1 + 1

da2

)d/2[1 +O

(
1

d
+ a2

)]
, (26)

Next,

log
(
bam−1

)
= −(m− 1) log

1

a
+ log b, (27)

and

−(m− 1) log
[
−log

(
bam−1

)]
= −(m− 1) log log

1

a
− (m− 1) log(m− 1) + o(1). (28)

Adding (26), (27), (28) and −logα yields

bam−1mκmΛd,m
r + log

(
bam−1

)
− (m− 1) log

[
−log

(
bam−1

)]
− logα (29)

=

√
2π

m−1
2

Γ(m2 )
λκd

a(
1 + 1

da2

)d/2[1 +O

(
1

d
+ a2

)]
− (m− 1) log

1

a
− (m− 1) log log

1

a
− logBm + o(1),

(30)

where

α (m− 1)m−1

b
=

π
m+1

2 (m− 1)m−1

2
3m−5

2 Γ(m2 )
2

=: Bm (31)
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follows from the expressions of α in (23) and b in (24). We now observe by monotonicity and continuity

in the variable a ∈ (0, 1) that the equation
√
2π

m−1
2

Γ(m2 )
λκd

a(
1 + 1

da2

)d/2 = (m− 1) log
1

a
+ (m− 1) log log

1

a
+ logBm + τ (32)

has an asymptotically unique solution a := a(d; τ), which tends to 0 because λκd → ∞. Passing to the

logarithm easily yields

d

2
log

(
1 +

1

da2

)
= log

Am λκd
1
a log

1
a

−
(m− 1) log log 1

a + logBm + τ

(m− 1) log 1
a

+ o

(
1

log 1
a

)
with

Am :=

√
2π

m−1
2

(m− 1)Γ(m2 )
. (33)

Dropping the O(1) terms, we have in particular

1

d
log

1

a
+

1

d
log log

1

a
+O

(
1

d

)
=

1

d
log λκd −

1

2
log

(
1 +

1

da2

)
. (34)

If log λκd ≪ d holds, then 1
d log

1
a → 0, and then log(1 + 1

da2
)→ 0. This shows that da2 →∞ and

1

d
log λκd −

1

2da2
(
1 + o(1)

)
= O

(
log d

d

)
.

With log2 d≪ log λκd, this implies 1
a = O(

√
log λκd), then iterating (34) yields 1

a ∼
√
2 log λκd, and

log
1

a
= log

√
d
(
(λκd)

2
d − 1

)
+O

(
log log λκd
log λκd

)
(subcritical regime).

Similarly, if 1
d log λκd → x ∈ (0,∞), then (34) implies that log 1

a = O(d), which in turn implies that

log
(
1+ 1

da2

)
= O(1), meaning that a ≳ 1√

d
. This forces 1

d log λκd−
1
2 log

(
1+ 1

da2

)
→ 0, or in other words,

1

a
∼
√

d
(
(λκd)

2
d − 1

)
∼
√

d(e2x−1).

One more iteration of (34) gives

log
1

a
= log

√
d(e2x−1) +O

(
log d

d

)
(critical regime).

Lastly, if d≪ log λκd ≪ d
3
2 holds, then (34) forces da2 → 0 and(

1 +
1

d

)
log

1

a
+O

(
log log 1

a

d

)
= log

(
(λκd)

1
d

√
d
)
− 1

2
log(1 + da2),

which implies 1
a ∼ (λκd)

1
d
√
d and also 1

d log
2 1
a → 0. Plugging this back into the previous equation, we

find

log
1

a
=

(
1− 1

d

)
log
(
(λκ)

1
d

√
d
)
+O

(
log d

d
∨ (λκd)

− 2
d

)

= log

√
d
(
(λκd)

2
d − 1

)
+ o

(
1

log 1
a

)
(supercritical regime),
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where the second asymptotic equality holds under 1 ≪ 1
d log λκd −

1
2 log log d ≪

√
d. In particular,

1
d log

2 1
a ≪ 1 holds. Finally, if we plug in (32) into (30), we obtain that (29) reduces to

bam−1mκmΛd,m
r + log

(
bam−1

)
− (m− 1) log

[
−log

(
bam−1

)]
= τ +O

(
log

1

a
·
[
1

d
+ a2

])
,

where the error term is a o(1) because (18) holds under each of the three stated conditions (Asub), (Acrit)

and (Asup). □

Scholium 4.5 (Summary of useful asymptotics derived in the proof of Lemma 4.4). The sequence a

fulfills the implicit asymptotic equality

d

2
log

(
1 +

1

da2

)
= log

Am λκd
1
a log

1
a

−
(m− 1) log log 1

a + logBm + τ

(m− 1) log 1
a

+ o

(
1

log 1
a

)
, (35)

where we record

Am :=

√
2π

m−1
2

(m− 1)Γ(m2 )
, Bm :=

π
m+1

2 (m− 1)m−1

2
3m−5

2 Γ(m2 )
2

, (36)

from (33) and (31). Furthermore we have, in all regimes,

log
1

a
= s(d) + o

(
1

s(d)

)
, where s(d) := log

√
d
(
(λκd)

2
d − 1

)
. (37)

We are now ready to prove Theorem 1.2, in the case m ≥ 2.

Proof of Theorem 1.2, case m ≥ 2. For τ ∈ R, a := a(d; τ), and r := (1 + da2)
− 1

2 as in Lemma 4.4, the

conditions to apply Lemma 4.3 are in place, hence (recalling (12))

lim
d→∞

P(hd,mλ ≥ r) = e− e−τ
.

Now, notice that

P(hd,mλ ≥ r) = P
(
hd,mλ ≥ (1 + da2)

− 1
2

)
= P

[
−d log

(
1− (hd,mλ )

2
)
≥ d

2
log

(
1 +

1

da2

)]
.

Plugging in (35), we find

P(hd,mλ ≥ r) = P

[
log

Am λκd
1
a log

1
a

− d log
1√

1− (hd,mλ )
2
≤

(m− 1) log log 1
a + logBm + τ

(m− 1) log 1
a

+ o

(
1

log 1
a

)]
.

To conclude, it remains to express log 1
a and log log 1

a in terms of s(d) := log r(d). According to (37),

log
1

a
= s(d) + o

(
1

s(d)

)
,

and so

log log
1

a
= log s(d) + o

(
1

s(d)

)
.

Hence

(m− 1)d s(d)

1
d
log

Am λκd
r(d)s(d)

− log
1√

1− (hd,mλ )
2

− (m− 1) log s(d)− logBm
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converges in law to the standard Gumbel distribution. This establishes Theorem 1.2 with

a(d;m) := (m− 1)s(d) log
Am λκd
r(d)s(d)

− (m− 1) log s(d)− logBm, (38)

and

b(d;m) := (m− 1)d s(d). (39)

□

5. Consequences on the radius-vector function

To conclude this work, we prove an easy consequence on the asymptotics of the radius-vector function ρdλ
given at (2). Recall that ρdλ ≤ hdλ, see Figure 1.

Corollary 5.1 (Subcritical and critical regimes for ρdλ). Let Assumption (H) hold.

(i) In the subcritical regime, under the condition (Asub),

lim sup
d→∞

√
d

2 log λκd
ρdλ ≤ 1, in probability.

(ii) In the supercritical regime, under the condition (Asup),

lim
d→∞

(λκd)
2

d+1

(
1− ρdλ

)
=

1

2
, in probability.

Proof. Since ρdλ ≤ hdλ, (i) is an immediate consequence of Theorem 1.1, and (ii) will follow from Theo-

rem 3.2 if we prove that, for every ε ∈ (0, 1),

P
((

λκd
) 2

d+1

(
1− ρdλ(u)

)
>

1

2
+ ε

)
−−−→
d→∞

0.

Let {X1, . . . , XN} = Pd
λ ∩ Cd(r;u) and denote by X ′

i, 1 ≤ i ≤ n, their projections onto the (d − 1)-

dimensional hyperplane {x ∈ Rd : ⟨x, u⟩ = r}, with r ∈ (0, 1) arbitrary. The number N has a Poisson

distribution with parameter ℓ(r) := λ|Cd(r;u)|, and conditional on N , the points X ′
i − ru are i.i.d.

according to a symmetric distribution on Rd−1. First, Wendel’s formula [30] allows us to write

P
(
0 /∈ conv{X ′

1, . . . , X
′
N}
∣∣∣N) = 1{N<d}+1{N≥d} 2

−(N−1)
d−2∑
k=0

(
N − 1

k

)

= 1− 1{N≥d} 2
−(N−1)

N∑
k=d

(
N − 1

k − 1

)
.

Next, we observe that ru /∈ conv{X ′
1, . . . , X

′
N} on the event {ρdλ(u) ≤ r}, so we get

P
(
ρdλ(u) ≤ r

)
≤ E

[
P
(
0 /∈ conv{X ′

1, . . . , X
′
N}
∣∣∣N)]

= 1− E

[
1{N≥d} 2

−(N−1)
N∑

k=d

(
N − 1

k − 1

)]
. (40)
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We now let r depend on d and observe that, for r := 1− (λκd)
− 2

d+1 (12 + ε), we have

ρdλ(u) ≤ r ⇐⇒ (λκd)
2

d+1

(
1− ρdλ(u)

)
>

1

2
+ ε,

so it suffices to prove that the upper bound in (40) goes to 0, where N is a Poisson r.v. with mean ℓ(r).

But

ℓ(r) =
λκd−1

2
B
(
1− r2; d+1

2 , 12
)

= −logP
(
hdλ ≤ r

)
= exp

{
log λκd +

d+ 1

2
log(1− r2)− log r

√
2πd+ o(1)

}
,

by (3), (4), and (8), provided that d≫ r−2. In fact,

1− r2 = (λκd)
− 2

d+1 (1 + 2ε)
[
1 +O

(
(λκd)

− 2
d+1

)]
,

so

d+ 1

2
log(1− r2) = −log λκd +

d+ 1

2
log(1 + 2ε) + o(1),

because 1
d log λκd −

1
2 log d≫ 1, which by the way shows that −d log(1− r2)→∞, so dr2 →∞, too. We

can then see that ℓ(r) = (1 + 2ε)
d
2
+o(d) ≫ d and so, as in the proof of Lemma 2.1, N ≫ d, w.h.p. Hence

N∑
k=d

(
N − 1

k − 1

)
∼

N−1∑
k=0

(
N − 1

k

)
= 2N−1,

and we conclude from the dominated convergence theorem that (40) vanishes. □

Appendix

In this appendix, we state and prove Proposition A, which is instrumental in deriving Theorem 1.2.

As exposed in Section 4.2, Janson’s result [18, Lemma 8.1] says that, under (J1) and (J2), the probability

P
(
Cover(Λ(a), R, a;M)

)
of covering the manifold M by a union of geodesic balls,

⋃
iBM (xi, aρi) = M ,

where the (xi, ρi)’s arise as the atoms of a Poisson point process with intensity Λ(a)vM (dx)⊗ P(R ∈ dρ),

converges to the Gumbel distribution function as a→ 0. In this section, we prove the following extension

where the random radius R is allowed to depend on a. Instead of adapting Janson’s result and rewriting

the whole proof, we rather reduce to it using a coupling argument. Namely, if Ra converges to R in such

a way that we may construct (R,Ra) so that

(1− η)R ≤ Ra ≤ (1 + η)R (41)

holds with high probability for some positive sequence η := η(a) vanishing sufficiently fast, then we

may approximate (from above and below) P
(
Cover(Λ, Ra, a;M)

)
with similar probabilities where Ra is

changed to (1± η)R, which after replacing a by a/(1± η) leads to the case handled by Janson.

In Proposition A below, condition (42) allows us to realize the upper bound in (41) and is of course

satisfied if the stronger condition (∀ρ > 0, P(Ra > ρ) ≤ P(R > ρ)) holds for a > 0 sufficiently small (e.g.,
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if the sequence of functions ρ 7→ P(Ra > ρ) is eventually non-decreasing as a → 0), while condition (43)

allows us to realize the lower bound in (41).

Proposition A (Extension of Janson’s result). Let M be a C2, D-dimensional compact Riemannian

manifold, and let Λ := Λ(a) > 0 and R fulfill Janson’s conditions (J1) and (J2). Suppose Ra, a > 0, are

positive random variables such that for every w > 0 and all a sufficiently small,

sup
ρ>0

P(Ra > ρ)

P
([

1 + w
log 1

a

]
R > ρ

) ≤ 1. (42)

Suppose further that there exists ε := ε(a) > 0 such that

P(R ≤ εa) = o

(
1

log 1
a

)
, and W1(Ra, R) = O

(
εa

log 1
a

)
. (43)

Then (J) also holds with Ra in place of R:

lim
a→0

P
(
Cover(Λ, Ra, a;M)

)
= e− e−τ

.

Proof. First, with the assumptions (J1) and (J2) of Janson’s theorem [18, Lemma 8.1] fulfilled for R, the

convergence (J) holds:

lim
a→0

P
(
Cover(Λ, R, a;M)

)
= e− e−τ

.

To prove the same for Cover(Λ, Ra, a;M), we use a coupling argument. Let w > 0 and η := w/log 1
a .

By (42), it holds for all a sufficiently small that

∀ρ > 0, P(Ra > ρ) ≤ P
(
(1 + η)R > ρ

)
.

Applying the inverse method, that is, considering the generalized inverses F−1
a and F−1 of the distribution

functions of Ra and R respectively, and setting Ra := F−1
a (U) and R := F−1(U) for a uniform variable U

in [0, 1], we may then suppose for every small a > 0 that Ra and R are coupled so that

Ra ≤ (1 + η)R, almost surely.

We then introduce independent, uniformly distributed variablesXi, i ≥ 1, onM and, for every small a > 0,

an independent Poisson-distributed variable Na with mean Λ(a)vM (M), as well as a further independent

family (Ra,i, Ri)i≥1 of i.i.d. copies of (Ra, R). Thus, for every small a > 0, we have constructed a Poisson

point process Ξa := {Xi, Ra,i, Ri}1≤i≤Na on M × (0,∞)2 whose projections Ξ1,a := (Xi, Ra,i)1≤i≤Na and

Ξ2,a := (Xi, Ri)1≤i≤Na have intensity ΛvM (dx)⊗ P(Ra ∈ dρ) and ΛvM (dx)⊗ P(R ∈ dρ) respectively. In

particular, with this construction the two covering events are given by

Cover(Λ, Ra, a;M) =

⋃
Ξ1,a

BM (Xi, aRa,i) = M

 and Cover(Λ, R, a;M) =

⋃
Ξ2,a

BM (Xi, aRi) = M

.
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Since Ra,i ≤ (1 + η)Ri almost surely for all i ≥ 1, we get

P
(
Cover(Λ, Ra, a;M)

)
= P

⋃
Ξ1,a

BM (Xi, aRa,i) = M



≤ P

⋃
Ξ2,a

BM (Xi, a(1 + η)Ri) = M


= P

(
Cover(Λ, R, (1 + η)a;M)

)
,

and therefore,

lim sup
a→0

P
(
Cover(Λ, Ra, a;M)

)
≤ lim sup

a→0
P
(
Cover(Λ−, R, a;M)

)
,

where, recalling J(Λ, R, a;M)→ τ by (J2) and η := w/log 1
a ,

Λ−(a) := Λ

(
a

1 + η

)

=
(1 + η)D

b(R;M)aDvM (M)

(
log

(1 + η)D

b(R;M)aD
+D log log

(1 + η)D

b(R;M)aD
+ logα(R) + τ + o(1)

)

=
1 +Dη + o(η)

b(R;M)aDvM (M)

(
log

1

b(R;M)aD
+D log log

1

b(R;M)aD
+ logα(R) + τ + o(1)

)

=

[
1 +

Dw

log 1
a

+ o

(
1

log 1
a

)]
Λ(a).

This entails J(Λ−, R, a;M)→ τ −Dw, so Janson’s theorem applies with

lim
a→0

P
(
Cover(Λ−, R, a;M)

)
= e− e−τ−Dw

.

Letting w → 0+, we have proved

lim sup
a→0

P
(
Cover(Λ, Ra, a;M)

)
≤ e− e−τ

.

To establish the other direction, we keep w > 0 and η := log 1
a , as well as the Poisson point process

Ξa := {Xi, Ra,i, Ri}1≤i≤Na and its projections Ξ1,a and Ξ2,a. It is known by the Kantorovich–Rubinstein

theorem [10, Theorem 11.8.2] that

W1(Ra, R) =

ˆ 1

0

∣∣F−1
a (u)− F−1(u)

∣∣du,
that is, with the same coupling of (Ra, R) constructed via the inverse method, E |Ra −R| = W1(Ra, R).

We then restrict Ξa by keeping only the radii Ra,i such that Ra,i ≥ (1− η)Ri:

Ξ̃a :=
{
(Xi, Ra,i, Ri) ∈ Ξ : Ra,i ≥ (1− η)Ri

}
.



D
ra
ft

Fe
br
ua
ry
20
24

THE SUPPORT FUNCTION OF THE HIGH-DIMENSIONAL POISSON POLYTOPE 23

Hence Ξ̃2,a := {(Xi, Ri) : (Xi, Ra,i, Ri) ∈ Ξ̃a} ⊆ Ξ2,a has a smaller intensity, Λ̃vM (dx)⊗ P(Ra ∈ dρ) with

Λ̃(a) := Λ(a)P(Ra ≥ (1− η)R). Since, using εa fulfilling (43) and Markov’s inequality,

P(Ra < (1− η)R) ≤ P(R ≤ εa) + P(|Ra −R| > ηεa)

≤ P(R ≤ εa) +
1

w

(
εa log

1

a

)
W1(Ra, R)

= o

(
1

log 1
a

)
,

we have Λ̃(a) = Λ(a)[1 + o(log−1( 1a))], which by (J2) implies that J
(
Λ̃, R, a;D

)
→ τ , i.e.,

Λ̃(a) =
1

b(R;M)aDvM (M)

(
log

1

b(R;M)aD
+D log log

1

b(R;M)aD
+ logα(R) + τ + o(1)

)
. (J̃2)

Now,

P
(
Cover(Λ, Ra, a;M)

)
= P

⋃
Ξ1,a

BM (Xi, aRa,i) = M



≥ P

⋃
Ξ̃a

BM (Xi, aRa,i) = M



≥ P

⋃
Ξ̃2,a

BM (Xi, a(1− η)Ri) = M


= P

(
Cover(Λ+, Ri, (1− η)a;M)

)
and therefore,

lim inf
a→0

P
(
Cover(Λ, Ra, a;M)

)
≥ lim inf

a→0
P
(
Cover(Λ+, R, a;M)

)
,

where, recalling (J̃2) and η := w/log 1
a ,

Λ+(a) := Λ̃

(
a

1− η

)

=
(1− η)D

b(R;M)aDvM (M)

(
log

(1− η)D

b(R;M)aD
+D log log

(1− η)D

b(R;M)aD
+ logα(R) + τ + o(1)

)

=
1−Dη + o(η)

b(R;M)aDvM (M)

(
log

1

b(R;M)aD
+D log log

1

b(R;M)aD
+ logα(R) + τ + o(1)

)

=

[
1− Dw

log 1
a

+ o

(
1

log 1
a

)]
Λ(a).

This entails J(Λ+, R, a;M)→ τ −Dw, so Janson’s theorem applies again with

lim
a→0

P
(
Cover(Λ+, R, a;M)

)
= e− e−τ+Dw

.

It remains to let w → 0+ to complete the proof. □
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[28] C. Schütt, Random polytopes and affine surface area, Math. Nachr. 170 (1994), 227–249. MR1302377

[29] N. M. Temme, Special functions, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996, An

introduction to the classical functions of mathematical physics. MR1376370

[30] J. G. Wendel, A problem in geometric probability, Math. Scand. 11 (1962), 109–111. MR146858
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