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Abstract

We provide explicit conditions, in terms of the transition kernel of its driving particle,
for a Markov branching process to admit a scaling limit toward a self-similar growth
fragmentation with negative index. We also derive a scaling limit for the genealogical
embedding considered as a compact real tree.
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1 Introduction

Imagine a bin containing n balls which is repeatedly subject to random (binary) divi-
sions at discrete times, until every ball has been isolated. There is a natural random
(binary) tree with n leaves associated with this partitioning process, where the sub-
trees above a given height k > 0 represent the different subcollections of all » balls at
time k, and the number of leaves of each subtree matches the number of balls in the
corresponding subcollection. The habitual Markov branching property stipulates that
these subtrees must be independent conditionally on their respective size. In the liter-
ature on random trees, a central question is the approximation of so-called continuum
random trees (CRT) as the size of the discrete trees tends to infinity. We mention espe-
cially the works of Aldous [1-3] and Haas, Miermont, et al. [14-17,23]. Concerning
the above example, Haas and Miermont [16] obtained, under some natural assumption
on the splitting laws, distributional scaling limits regarded in the Gromov—Hausdorff-
Prokhorov topology. In the Gromov—Hausdorff sense where trees are considered as
compact metric spaces, they especially identified the so-called self-similar fragmen-
tation trees as the scaling limits. The latter describe the genealogy of self-similar
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Fig.1 An example of dynamics
with growth transitions (in bold)

fragmentation processes, which, reciprocally, are known to record the size of the
components of a (continuous) fragmentation tree above a given height [14], and thus
correspond to scaling limits for partition sequences of balls as their number n tends
to infinity. One key tool in the work of Haas and Miermont [16] is provided by some
non-increasing integer-valued Markov chain which, roughly speaking, depicts the size
of the subcollection containing a randomly tagged ball. This Markov chain essentially
captures the dynamics of the whole fragmentation and, by their previous work [15],
itself possesses a scaling limit.

The purpose of the present work is to study more general dynamics which incorpo-
rate growth, that is the addition of new balls in the system (see Fig. 1). One example
of recent interest lies in the exploration of random planar maps [7,8], which exhibits
“holes” (the yet unexplored areas) that split or grow depending on whether the new
edges being discovered belong to an already known face or not. We thus consider a
Markov branching system in discrete time and space where at each step every particle
is replaced by either one particle with a bigger size (growth) or by two smaller particles
in a conservative way (fragmentation). We condition the system to start from a single
particle with size n (we use the superscript - in this respect) and we are interested
in its behavior as n — oco. Namely, we are looking for:

1. A functional scaling limit for the process in time (X(k): k > 0) of all particle
sizes:

()
(wﬁo) D (v(y: 1= 0),

n n—00

in some sequence space, where the a,, are positive (deterministic) numbers;
2. A scaling limit for the system’s genealogical tree, seen as a random metric space

xX™, dy):
d
<x @, —") D,y
a, ) n—oo

in the Gromov—Hausdorff topology.
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Like in the pure fragmentation setting, we may single out some specific integer-valued
Markov chain, but which of course is no longer non-increasing. To derive a scaling
limit for this chain, a first idea is to apply, as a substitution to [15], the more general
criterion of Bertoin and Kortchemski [9] in terms of the asymptotic behavior of its
transition kernel at large states. However, this criterion is clearly insufficient for the
convergences stated above as it provides no control on the “microscopic” particles.
To circumvent this issue, we choose to “prune” the system by freezing the particles
below a (large but fixed) threshold. That is to say, we let the system evolve from a
large size n but stop every individual as soon as it is no longer bigger than some
threshold M > 0 which will be independent of n, and we rather study the modifica-
tions X and A of the process and the genealogical tree that are induced by this
procedure.

The limits Y and ) that we aim at are, respectively, a self-similar growth frag-
mentation process and its associated genealogical structure. Indeed, the scaling limits
of integer-valued Markov chains investigated in [9], which we build our work upon,
belong to the class of so-called positive self-similar Markov processes (pssMp), and
these processes constitute the cornerstone of Bertoin’s self-similar growth fragmenta-
tions [6,7]. Besides, in the context of random planar maps [7,8], they have already been
identified as scaling limits for the sequences of perimeters of the separating cycles that
arise in the exploration of large Boltzmann triangulations. Informally, a self-similar
growth fragmentation Y depicts a system of particles which all evolve according to a
given pssMp and whose each negative jump —y < 0 begets a new independent particle
with initial size y. In our setting, the self-similarity property has a negative index and
makes the small particles split at higher rates, in such a way that the system becomes
eventually extinct [6, Corollary 3]. The genealogical embedding ) is thus a compact
real tree; its formal construction is presented in [24].

Because of growth, one main difference with the conservative case is, of course,
that the mass of a particle at a given time no longer equals the size (number of leaves)
of the corresponding genealogical subtree. In a similar vein, choosing the uniform
distribution to mark a ball at random will appear less relevant than a size-biased pick
from an appropriate (non-degenerate) supermartingale. This will highlight a Markov
chain admitting a self-similar scaling limit (thanks to the criterion [9]), and which we
can plug into a many-to-one formula. Under an assumption preventing an explosive
production of relatively small particles, we will then be able to establish our first
desired convergence. Concerning the convergence of the (rescaled) trees X, we shall
employ a Foster—Lyapunov argument to obtain an uniform control on their heights,
which are nothing else than the extinction times of the processes X, Contrary to
what one would first expect, it turns out that a good enough Lyapunov function is not
simply a power of the size, but merely depends on the scaling sequence (a,). This
brings a tightness property that, together with the convergence of “finite-dimensional
marginals”, will allow us to conclude.

In the next section, we set up the notation and the assumptions more precisely and
state our main two results.
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2 Assumptions and Results

Our basic data are probability transitions p, ,,, m > n/2 and n € N “sufficiently
large”, with which we associate a Markov chain, generically denoted X, that governs
the law of the particle system X: at each time k € N and with probability p, m.,
every particle with size n either grows up to a size m > n, or fragmentates into two
independent particles with sizes m € {[n/2],...,n — 1} and n — m. That is to say,
X ™ (0) = n is the size of the initial particle in X, and given X (k) for some k > 0,
X (k 4 1) is the largest among the (one or two) particles replacing X (k). We must
empbhasize that the transitions p, , from n “small” are irrelevant since our assumptions
shall only rest upon the asymptotic behavior of p, ,, as n tends to infinity. Indeed, for
the reason alluded in Introduction that we explain further below, we rather study the
pruned version X where particles are frozen (possibly at birth) when they become not
bigger than a threshold parameter M > 0, which we will fix later on. Keeping the same
notation, this means that X is a Markov chain stopped upon hitting {1, 2, ..., M}. For
convenience, we omit to write the dependency in M, and set p, , == 1 forn < M.

In turn, the law of the genealogical tree X’ can be defined inductively as follows.
(We give a more rigorous construction in Sect. 3.) Let 1 < k; < --- < k,, enumerate
the instants during the lifetime ¢ ™ of X™ when n; := X" (k; — 1) — X" (k;) > 0.
Then X consists in a branch with length £ ™ to which are, respectively, attached, at
positions k; from the root, independent trees distributed like X" (agreeing that X"
degenerates into a single vertex for n < M). We view X as a metric space with
metric denoted by dj,.

Suppose (a,),eN 1S a sequence of positive real numbers which is regularly varying
with index y > 0, in the sense that for every x > 0,

Jim 2y, )

n—oo a,

Our starting requirement will be the convergence in distribution

(n)
(M , ) S w0, ®

in the space ([0, oo), R) of cadlag functions on [0, co) (endowed with Skorokhod’s
J1 topology), toward a positive strong Markov process (Y (¢): ¢ > 0), continuously
absorbed at 0 in an almost surely finite time ¢, and with the following self-similarity
property:

The law of Y started from x > 0 is that of (xY (x~7 r): t > 0) when Y starts from 1.

3

Since the seminal work of Lamperti [20], this simply means that
t
logY(t) =& </ Y(s)7V ds) , t>0, @)
0
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with & aLévy process which driftsto —oco ast — oco. We denote by W the characteristic
exponent of & (so there is the Lévy—Khintchine formula E[exp(¢&(¢))] = exp(t\W¥ (q))
for every t+ > 0 and every ¢ € C, wherever this makes sense) and by A the Lévy
measure of its jumps (that is a measure on R \ {0} with /(1 A y%) A(dy) < o).

In order to state precisely our assumptions, we need to introduce some more nota-
tion. First, we define the exponent

Kk(q) = V(g + [ (1—e’)? A(dy),

(=00,0)

whose meaning will be discussed shortly (in the paragraph “Discussion on the assump-
tions”). Next, we also define, for every n € N, the discrete versions

Wy (q) := an i Dn,m [(%)‘1 - 1] , and kn(q) = W,(q) +an nii Pum (1 B %)q .
m=1 m=1

Finally, we fix some parameter ¢* > 0. After [9, Theorem 2], convergence (2) holds
under the following two assumptions:

(H1) Foreveryt € R,
lim W, (ir) = W(ir).
n—00

(H2) We have

o
m\4
lim sup a, Z Dn,m (;) < Q.

n— 00
m=2n

Indeed, by [19, Theorems 15.14 and 15.17], Assumption (H1) is essentially equivalent
to (A1) and (A2) of [9], while (H2) rephrases Assumption (A3) there. We now introduce
the new assumption:

(H3) We have either k(¢*) < 0, or k(¢*) = 0 and «'(¢g*) > 0. Moreover, for some

e >0,
n-l m\q*—¢ *
lim a, > pun (1-7%) = / (1= ") ™" Ady). ©)
n—o00 ot n (—00,0)

Postponing the description of the limits, we can already state our two convergence
results formally:

Theorem 1 Suppose (H1)—(H3). Then we can fix a freezing threshold M sufficiently
large so that, for every g > 1V q*, the convergence in distribution

(n)
(w_o) 9 (vw:1=20)
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holds in the space D([0, 00), £2Y), where Y is the self-similar growth fragmentation
driven by Y, and

00
v — {XIZ x1=x2>--->0): Z(xi)q < 00
i=1

(that is, the family of particles at a given time is always ranked in the non-increasing
order).

Theorem 2 Suppose (H1)—(H3), and g* > y. Then we can fix a freezing threshold M
sufficiently large so that there is the convergence in distribution

<x<">, j—) Dy,

n—oo

in the Gromov—Hausdorff topology, where ) is the random compact real tree that
represents the genealogy of Y.

Description of the limits As explained in Introduction, the process Y portrays the size of
particles in the self-similar growth fragmentation process Y := (Y(¢): t > 0), whose
construction we briefly recall (referring to [6,7] for more details): The Eve particle Yy
is distributed like Y. We rank the negative jumps of a particle Y, in the decreasing order
of their absolute sizes (and chronologically in case of ex aequo). When this particle
makes its jth negative jump, say with size —y; < 0, then a daughter particle Y,; is
born at this time and evolves, independently of its siblings, according to the law of ¥
started from y;. (Recall that Y is eventually absorbed at 0, so we can indeed rank the
negative jumps in this way; for definiteness, we set b,; := oo and Y,; := 0 if ¥,
makes less than j negative jumps during its lifetime.) Particles are here labeled on the
Ulam—Harris tree U = U,fozo N”", the set of finite words over N, where NO = {7} is

reduced to the root of the tree, and a vertex u := (uy, ua, ..., ur) € U, at generation
lu| ;= k,has uj := (uy, u2, ..., ug, j) as jth descendent. Write b, for the birth time
of Y,,. Then

Y(t) = (Yu(t —by):uel, b, < t), t>0.

After [6,7], this process is self-similar with index —y. Roughly speaking, this means
that a particle with size x > 0 evolves x 7 times “faster” than a particle with size 1.
Since here —y < 0, there is the snowball effect that particles get rapidly absorbed
toward O as time passes, and it has been shown [6, Corollary 3] that such a growth
fragmentation becomes eventually extinct, namely that € := inf{r > 0: Y(z) = @} is
almost surely finite.

The extinction time € is also the height of the genealogical structure ) seen as a
compact real tree. Referring to [24] for details, we shall just sketch the construction.
Let Y, 0 consists in a segment with length ¢, := inf{r > 0: Y, () = 0} rooted at a
vertex u. Recursively, define ), 41 by attaching to the segment ), o the trees Vy;j »
atrespective distances b, j — by, for each born particle uj, j < h+ 1. The limiting tree
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Y = lim 1, o, Vn, where V), := Vg fulfills a so-called recursive distributional
equation. Namely, by [24, Corollary 4.2], given the sequence of negative jump times
and sizes (bj, y;) of Y and an independent sequence yl, ))2, ... of copies of ), the
action of grafting, on a branch with length ¢ := inf{t > 0: Y (t) = 0} and at dis-
tances b; from the root, the trees Y/ rescaled by the multiplicative factor y}/, yields
a tree with the same law as ). With this connection, Rembart and Winkel [24, Corol-
lary 4.4] proved that € admits moments up to the order sup{g > 0: k(g) < 0}/y.
When particles do not undergo sudden positive growth (i.e., A((0, 0o)) = 0), Bertoin
et al. [7, Corollary 4.5] more precisely exhibited a polynomial tail behavior of this
order for the law of €.

Discussion on the assumptions Observe that (H1) entails (H2) when the Lévy mea-
sure A of £ is bounded from above (in particular, when & has no positive jumps).
By analyticity, Assumptions (H1) and (H2) imply that ¥, (z) — W(z) asn — oo,
for 0 < Mz < ¢*. Adding the condition (5) in (H3) then yields the convergence
kn(z) = k(z) for Nz in a left-neighborhood of ¢*. Lastly, the first condition in (H3)
itself implies W(g™) < 0 (since ¥ < «) and, together with the other assumptions, that
there must exist g, € (0, ¢*) and some threshold M such that

kn(q) <0 and k(gq) <O, forallg € [q+«,q™) and n > M,

which is all but a superfluous requirement. Indeed, the condition «(g¢) < 0 for some
g > 0 is necessary (and sufficient) [10] to prevent local explosion of the growth
fragmentation Y (a phenomenon which would not allow us to view it in some £9-
space). Informally, the cumulant function k (q) captures the expected value of the sum
of the particle sizes raised to the power ¢ immediately after the first birth event. This
function constitutes a key feature of branching processes and, in particular, of self-
similar growth fragmentations [25]. Of course, the meanings of the quantity «;, (q)
and of the condition «,(g) < 0 should be regarded the same but at the discrete level
(that is, w.r.t. X™).

We stress that our assumptions do not provide any control on the “small particles”
(n < M). This explains why we need to “freeze” them (meaning that they no longer
grow or beget children); otherwise, their number could become quickly very high and
make the system explode, as we illustrate in the example below. We will basically
choose M as above, so that k,,(¢) < 0 for some g and all n, once we take the freezing
into account (which is tantamount to resetting1 Kk, :=0forn < M).

Example 2.1 Suppose that a particle with size n increases to size n + 1 with probability
p < 1/2 and, at least when n is small, splits into two particles with sizes 1 and n — 1
with probability 1 — p. Thus, at small sizes, the unstopped Markov chain essentially
behaves like a simple random walk. On the one hand, we know from Cramér’s theorem
(see, e.g., [12, Theorem 2.2.3]) that for every ¢ > 0 sufficiently small,

]P(X“)(k) > (1 -2p +8)k), k>0,

1 We make here a slight abuse on the notation. Again, even though the dependency is not explicitly written,
the discrete objects such as «y, XMl ultimately depend on the freezing threshold M.
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decreases exponentially at a rate ¢,(¢) > 0. On the other hand, keeping only track
of particles with size 1 or 2, the number of particles with size 1 is bounded from
below by Z!!, where Z := (Z!!l, Z[?]) is a 2-type Galton—Watson process whose

mean-matrix
0 1
2(l-p) 0

has spectral radius r, := /2(1 — p) > 1, so that by the Kesten—Stigum theorem
[5, Theorem V.6.1] the number of particles with size 1 at time k — oo is of order
at least rf,, almost surely. Consequently, the expected number of particles which are
above (1 — 2p + ¢)k at time 2k is of exponential order at least m ,(¢) = logr, —
cp(e). Itis easily checked that this quantity may be positive (e.g., m1/4(1/4) > 0.16).
Thus, without any “local” assumption on the reproduction law at small sizes, the
number of small particles may grow exponentially and we cannot in general expect
X®™ (ay,-])/n tobe tight in £}, for some ¢ > 0. However, this happens to be the case
for the perimeters of the cycles in the branching peeling process of random Boltzmann
triangulations [8], where versions of Theorems 1 and 2 hold for y = 1/2, ¢* = 3,
and M = 0, although «,(3) < 0 seems fulfilled only for M > 3 (which should
mean that the holes with perimeter 1 or 2 do not contribute to a substantial part of the
triangulation).

We start with the relatively easy convergence of finite-dimensional marginals
(Sect. 3). Then, we develop a few key results (Sect. 4) that will be helpful to complete
the proofs of Theorem 1 (Sect. 5) and Theorem 2 (Sect. 6).

3 Convergence of Finite-Dimensional Marginals

In this section, we prove finite-dimensional convergences for both the particle pro-
cess X and its genealogical structure X. (We mention that the freezing procedure is
of no relevance here as it will be only useful in the next section to establish tightness
results; in particular the freezing threshold M will be fixed later.)

We start by adopting a representation of the particle system X that better matches
that of Y given above. We define, for every word u := uy...u; € N, the u-locally
largest particle2 (X, (k): £ = 0) by induction on i = 0, 1, ... Initially, for i = 0,
there is a single particle X labeled by u = &, born at time Bz := 0 and distributed
like X. Then, we enumerate the sequence (By,1,71), (Bu2,n2), ... of the negative
jump times and sizes of X, so thatny > np > --- and B,; < Byu(j+1) Whenevern; =
nj+1.Conditionally on (n),>1, the processes X,j, j = 1,2, ... are independent and
distributed like X ), respectively (for definiteness, we set B, := oo and X,,; := 0
if X, makes less than j negative jumps during its lifetime), and we have

(X)) izp = (Xulk =i u el g, <k) .

2 In the peeling of random Boltzmann maps [8], the locally largest cycles are called left-twigs.
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Recall the notation - to stress that the system is started from a particle with size

Lemma 3.1 Suppose (H1) and (H2). Then for every finite subset U C U, there is the
convergence in D([0, 00), RY):

(n) _ (n)
(xu (Lant) = A" GU) D (v-byiucU) . @©
n 0 n—o00 =)

Proof We follow the argument used to prove the second part of [8, Lemma 17]. For
h > 0,let Uy := {4 € U: |u| < h} be the set of vertices with height at most / in the
tree U. It suffices to show

(A1) Convergence (6) holds in D([0, co0), RY) for every finite subset U C Uy,

by induction on &. The statement (.%) is given by (2). Now, if U is a finite subset
of Up41 and F,, u € U, are continuous bounded functions from D ([0, c0), R) to R,
then the branching property entails that, for X, X . L(,n)(Lan-J — Bu)/n,

E|:l_[ Fu(X™M) ‘ (X ueU;,):| =[] R&E) - ] Eg’()n)(o)[Fu],
uel !

ueUNUy | rE}f]l
u|=h+

where E )(C") stands for expectation under the law PJS") of X o started from x, which
by (1), (2) and (3), converges weakly as n — oo to the law Py of Y started from x.
The values )A(,(,") (0) for |u| = h + 1 correspond to (rescaled) negative jump sizes of
particles at height 2. With [18, Corollary VI.2.8] and our convention of ranking the
jump sizes in the non-increasing order, the convergence in distribution (X L(,")(O) ‘u €
U, luf=h+1) - Y,0):u € U, |[ul = h+ 1) as n — oo thus holds jointly
with (.#,). Further, thanks to the Feller property [20, Lemma 2.1] of Y, its distribution
is weakly continuous in its starting point. By the continuous mapping theorem we
therefore obtain, applying back the branching property, that

|:1_[F (n)]mE[HF bu))]

uelU uelU

A priori, this establishes the convergence in distribution ()A( ,(4") ruelU) - (Y, (-—
by): u € U) only in the product space ([0, o0), R)V. By [18, Proposition 2.2] it
will also hold in D([0, 00), RU) provided that the processes Y, u € U, almost surely
never jump simultaneously. But this is plain since particles evolve independently and
the jumps of Y are totally inaccessible. Thus, (%)) — (Fh+1). O

Next, we proceed to the convergence of the finite-dimensional marginals of X,
which we shall first formally construct. For each u € U with 8, < oo, let ¢, denote
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the lifetime of the stopped Markov chain X,. Recall the definition in Sect. 2 of the
trees V, Vn, b > 0, related to Y’s genealogy, that echoes Rembart and Winkel’s
construction [24]. Similarly, let X, o simply consist of an edge with length ¢,, rooted
atavertex u. Recursively, define &), ;11 by attaching to the edge &, o the trees X, j at
a distance B, — B, from the root u, respectively, for each born particle uj, j < h+1,
descending from u. The tree &), := Xy ), is a finite tree whose vertices are labeled
by the set U™ of words over {1, ..., h} with length at most &. Plainly, the sequence
Xy, h > 0, is consistent, in that X}, is the subtree of &), 4.1 with vertex set U(h), and we
may consider the inductive limit X' := lim 1,_, o, Xj,. We write d,, (v, v’) for the length
of the unique path between v and v’ in X, All these trees belong to the space .7 of
(equivalence classes of) compact, rooted, real trees and can be embedded as subspaces
of a large metric space (such as, for instance, the space £! (N) of summable sequences
[3, Sect. 2.2]). Irrespective of the embedding, they can be compared one with each
other through the so-called Gromov—Hausdorff metric dgg on 7. We forward the
reader to [13,21] and references therein.

Lemma 3.2 Suppose (H1)—(H3). Then for all h € N, there is the convergence in
(7, dgn):

d d
(X‘}ln) P _") L) y h-
a n—o00
Proof 1t suffices to show the joint convergence of all branches. The branch going from
the root @ through the vertex u € U™ has total length £ := " +¢ in (X<")
and length €, := b, + (, in V. Recall that conditionally on {X, (0) = n}, the random

variable ¢, has the same distribution as ™ := ¢, By [9, Theorem 3.(i)], the
convergence

¢™ @
—

a, n—oo

C:=inf{t > 0: Y(t) =0}

holds jointly with (2). Adapting the proof of Lemma 3.1, we can more generally check
that for every finite subset U C U, we have, jointly with (6),

5(”)
( “ cueU i>(eu:ueU).

an n—00

In particular, this is true for U := uw, O

To conclude this section, we restate an observation of Bertoin, Curien, and
Kortchemski [8, Lemma 21] which results from the convergence of finite-dimensional
marginals (Lemma 3.1): with high probability as # — oo, “non-negligible” particles
have their labels in U™, Specifically, say that an individual u € U is (n, )-good, and
write u € G(n, ¢€), if the particles X, labeled by each ancestor v of u (including u
itself) have size at birth at least ne. Then:
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Lemma 3.3 We have

lim lim sup P® (g(n,e) ¢ U“”) — 0.

h—00 p—o0

4 A Size-Biased Particle and a Many-to-One Formula

We now introduce a “size-biased particle” and relate it to a many-to-one formula. This
will help us derive tightness estimates in Sects. 5 and 6 and thus complement the finite-
dimensional convergence results of the preceding section. Recall from Assumptions
(H1)—(H3) that we can find g, € (0, ¢*) such that, as n — 00, k,(q) — k(g) < O for
every g € [q«, q*). Consequently, we may and will suppose for the remainder of this
section that the freezing threshold M is taken sufficiently large so that k,(q) < 0 for
every n > M. (Note that k,(g,) = 0 for n < M, by our convention p, , 1= 1.)

Lemma4.1 Foreveryn € N,

E™ [(X(l))q* +(n— X(l))‘_’:] < ni. )

Therefore, the process’

> (Xulk = B))". k=0,

uel

is a supermartingale under P,

Proof The left-hand side of (7) is

oo
gx G+
n’ Y o [(ﬁ) +(1-7) } s (1 N Kn(q*)>,
m=0 n n/’+ ap

where k,(g+) < 0. Hence, the first part of the statement follows. The second part
follows by applying the branching property at any given time k > 0:

E®™ [Z(xu (k+1—B))*"

uel

X(k) = (x;: i € 1)} = DB [(X)" + (v = X())* ]
iel
<) )
iel

= ) (Xulk—B)".

uel

3 We set here X (@) :=0fori < 0in order to not burden the notation with the indicator ]l{ Bu<k}-
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Remark 4.2 Put differently, the condition “k, (g«) < 0” entails that n — n9* is super-
harmonic with respect to the “fragmentation operator”’. This map plays the same role
as the function f in [8], where it takes the form of a cubic polynomial (g, = 3) and

o F(Xulk=B0). k=0,

uel

is actually a martingale. More generally, the map n +— n%* could be replaced by any
regularly varying sequence with index g, but probably at the cost of heavier notation.

As we see in the proof of Ler_nma 4.1, the fact that «,(gx) < 0 allows us to introduce
a (defective) Markov chain (X (k) : k > 0) on N, to which we add 0 as cemetery state,
with transition

E [£(X(D): XD #0] = Y pun [(%)q fom+(1=2)" pn - m>} .
m=1

®)

We let ¢ := inf{k > 0: X (k) = 0} denote its lifetime. Up to a change of probability
measure, X follows the trajectory of a randomly selected particle in X, until it is
eventually absorbed to the cemetery state 0. It admits the following scaling limit
(which could also be seen as a randomly selected particle in Y; see [7, Sect. 4]):

Proposition 4.3 There is the convergence in distribution

y (1)
GJ%Q"Nﬁﬁg&MWN> o

in ID([0, 00), H_Q), where the limit I?fulﬁlls the same identity (4) as Y, but for a (killed)
Lévy process & with characteristic exponent k (q) := k(g + q). Further, if  denotes
the lifetime of Y, then the convergence

t™ @ s
—

a, n—o

holds jointly with (9).

Proof Write A, for the law of log(X ™ (1) /n), with the convention log 0 := —oo. We
see from (8) that a,, P(X (1) = 0) = —«k,(g«), and, forevery 0 < g < g™ — ¢,

[ i =a S [ () (1-2)7 (0-2) )]
= kn(gx + @) — kn(gs)-

Hence,

—a, R ({—o0)) + /R (e = D) @y An(dy) = Kkn(gs + ) —— R(@).
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Furthermore, by (H2),

00 o *

* ;o= . m\494
lim sup a,,/ e )Y A, (dy) < limsup ay E DPn.m (—) < 00.
1 n

n— 00 n— 00
m=2n

In othe[ words, assumptions (A1), (_AZ) and (A3) of [9] are satisfied (w.r.t the Markov
chain X and the limiting process Y). Our statement thus follows from Theorems 1
and 2 there.* m|

Heading now toward pathwise and optional many-to-one formulae, we first set up
some notation. Let A € N be a fixed subset of states, and let £ € 9U refer to an infinite
word over N, which we see as a branch of U. Forevery u € UUJU and every k > 0, set

X, (k) = Xuk1(k — Butk))

wheNre ulk] is the youngest ancestor v of u wiLh By < k, and write t,f = inf{k >
0: X, (k) € )} for the first hitting time of A by X,,. Let also 7® := inf{k > 0: X(k) €
A}. Now, imagine that once a particle hits A, it is stopped and thus has no further
progeny. The state when all particles have hit A in finite time is x7* := X, (), u € Ua,
where Uy := {u € U: £[7}*] = u for some £ € 9U with 7;* < oo}.

Lemma 4.4 (Many-to-one formula)

(i) Foreveryn €N, everyk > 0, and every f: NF*1 > R,
E™ |:Z(Xu(k —B))" f(Xuli): i < k)} = nEW[f(XG):i<k); ¢ >k].
uelU

(i) Foreveryn € N, every A C N, and every f: Z4 x N — Ry,

E® Z (xfj)q*f(rf,x,?) = pt=E™ G X(fA)); ¢ > ]

MEUA

Proof (i) The proofis classical (see, e.g., [26, Theorem 1.1]) and proceeds by induction
on k. The identity clearly holds for k = 0. Using (8) together with the branching
property at time k,

E™ [Z(Xu(k +1=B))" f(Xul):i <k+1) ‘ Xu(i) =xu4, i < k}

uel

00
= Z Z Pxy jom (mq*f(xu,o’ cees Xusks m)

uelUm=0

4 Strictly speaking, the results are only stated when there is no killing, that is x (g«) = 0, but as mentioned
by the authors [9, p. 2562, §2], they can be extended using the same techniques to the case where some
killing is involved.
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—|—(xu,k — m)i*f(xu,o, e Xk Xuk — m))
= Z(xu’k)q* ECwd [ £ (%00 - -+ Xuk» X(1): X(1) #0].
uel

By taking expectations on both sides and applying the induction hypothesis with the
function f(xo, cey Xg) = E(xk)[f(xo, CLx X(D) X(D # 0] on the one hand,
and by applying the Markov property of )_( at time k on the other hand, we derive the
identity at time k + 1:

E™ [Z(xu(k +1=B))" f(Xul):i <k+ 1)}

uel
= nEMW[F(XG):i <k); T > k]
=n#EV[f(X():i<k+1);¢>k+1].

@ii) For every k > 0 and every xp,...,x;y € N, we set ka(xo, oL XE) =
IL{xo%A,‘.A,xk,]%A,xkEA}f(k’ .Xk). Then

EW Y ()" faron) | = ZE“” [Z (Xulk = b)) 2 (Ku(): i < k)}

uelx uel
o0
e ZE(”) [f(k, X(K)); T® =k; & > k]
k=0

= n"EM[f(* X(7%)); ¢ > 78],
by (i) and the monotone convergence theorem. O

‘We now combine Proposition 4.3 and Lemma 4.4 to derive the following counterpart
of [8, Lemma 14] that we will apply in the next two sections. Consider the hitting set
A :={l,..., |ne]} and denote by x<”8 = x , u € U="¢ := U,, the population of
particles stopped below ne.

Corollary 4.5 We have

lim limsup n~“E® | 3" (x7")" | = 0.

u
£=>0 n—soo <ne
ueclU="*

Proof By Lemma 4.4,

n=9 g™ Z (xugna)q* — pm (E - ffna)’

uely=re
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where 7="¢ := inf{k > 0: X (k) < ne}. Thus, if  is the lifetime of ¥ and T=¢ :=
inf{t > 0: Y(r) < ¢}, then by Proposition 4.3 and the continuous mapping theorem,

limsup n~9 E™ Z (xZm) | < P(C> 7)),

n—00
uelU="e

which tends to 0 as ¢ — 0. O

5 Proof of Theorem 1

We prove Theorem 1 by combining Lemma 3.1 with the next two “tightness” proper-
ties. We suppose that Assumptions (H1)—(H3) hold and recall that U ¢ U refers to
the set of words over {1, ..., h} with length at most 4.

Lemma 5.1 For every § > 0,

hrnIP’ sup Z Y(t—b) >8 = 0.
120 uelU\U®

Proof This was already derived in [8, Lemma 20] and results from the following fact
[6, Corollary 4]:

E |:Z sup (Y, (t — bu))q:| < oo for k(g) <O.
uel 120

Lemma 5.2 If M is sufficiently large, then for every § > 0,

lim limsup P sup Z Xu(k — Bu))? S sn? | = 0.

h—00 p—co k>0 ;
= uel\u®

Proof Let us first take g, < ¢* and M as in Sect. 4. As in the proof of [8, Lemma 22]
and by definition of G(n, ¢) in Sect. 3, we claim that each particle in { X, (k—8,): u €
U\ G(n, )} has an ancestor with size at birth smaller than ne. Thanks to the branching
property, we may therefore consider that these particles derive from a system that has
first been “frozen” below the level ne, that is, with the notations of Sect. 4, from a
particle system having x="¢, u € U="*, as initial population. Hence, by Lemma 4.1
and Doob’s maximal 1nequal1ty,

* * 1
P sup E (Xu (k — ﬁu))q >dn? | < $9T0 e E™ E (xufng)q
k>0 n ~
ucU\G(n,e) uely=ne
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(bounding from above the £¢ “_norm by the £4+-norm). We conclude by Corollary 4.5
and Lemma 3.3. O

Proof of Theorem 1 From Lemmas 3.1, 5.1 and 5.2, we deduce the convergence in
distribution

b
n—00 120

(n) _p
(xu (et ):uw) D, (Yu(t—by): u € V)
>0

in the space D([0, co), £7 : (U)) of 24" (U)-valued cadlag functions on [0, c0), where
04 (U) = {x =euel): Y () < oo} .
uel

Since for ¢ > 1, rearranging sequences in the non-increasing order does not increase
their g-distance [22, Theorem 3.5], the convergence in £¢° (U) implies that in £9¢, g >
1vag*. O

6 Proof of Theorem 2

Similarly to the previous section, by Lemma 3.2 the proof of Theorem 2 is complete
once we have established that

lim P(don (Y, V) > 6) = 0,
and

lim tim sup P (dgu (X, 45" ) > da,) = 0, (10)

h—>00 p—oo

for all § > 0. The first display is clear since the tree ) is compact. The second will be
a consequence of the following counterpart of [8, Conjecture 1]:

Lemma 6.1 Suppose (H1)—~(H3), and q* > y. Then for every q < q*, and for M
sufficiently large,

(m(;c(m))q/ y
sup E| | — < 00,

neN An

where ht(X(”)) = Sup,. .y dn (D, x) is the height of the tree X,

The proof of Lemma 6.1 involves martingale arguments. Prior to writing it, we need
a preparatory lemma. Let us define
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~ i an \ " an_m\9""
Kn(q) := an Z Pn.m <—) -1+ < ) ,
el dan An

which slightly differs from &, (¢) to the extent that we have replaced the map m +— m4

by the g-regularly varying sequence A, (m) := a,‘,’/ Y. m e N (for convenience, we

have set a,, := 0, m < 0). Of course, k,, = &, if a,, = m" for every m € N.

Lemma 6.2 Suppose q* > y. Then we can find q. € (0, q*) such that, for every
q €1g+.9%),

lim k,(g) = «(g) <O.
n— o0

Proof We will more generally show that for every g-regularly varying sequence (),
e r m\4 i r m\4
dap Z] Pn,m [f - (;) :| dn Zl Pn,m [ nr;m - (1 - ;) :|
m= m=

provided g < g* is close enough to ¢*. Denoting by A, the law of log(X"™ (1)/n),
we observe that

an S pnn |2 (2 = [ ] (2] - e | mscan

m=1

+

— 0,
n—oo

which, by repeating the arguments in [9, Proof of Lemma 4.9], tends to 0 as n — oo.
Next, an appeal to Potter’s bounds [11, Theorem 1.5.6] shows that for every ¢ > 1
and § > 0 arbitrary small,

1(m)q+3 T'm m\q—9%
ORI
c\n n n

whenever m < n are sufficiently large. Thus, recalling that ¥, (¢) — W(g) and
kn(q) = K (q) for every g in some left-neighborhood of ¢*, we have

(ca+6 - v@+5) - (k@ - ¥@),

o=

n—1
.. Tn—m m\4q
" - >
l}lmmf a, E p,l,m|: . (1 n) ]_

n
m=1

and

lim sup ay i P [’"r"" -(1- ﬂ)q} < % (k@ =9 - ¥ -5) (k@ - V@)

n—00 n n
m=1

We conclude by letting ¢ — 1 and § — 0. O

We can now prove Lemma 6.1.
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Proof of Lemma 6.1 We shall rely on a Foster-type technique close to the machin-
ery developed in [4]; see in particular the proof of Theorem 2’ there. First, observe
that ht(X) is distributed like the extinction time £ of X:

ht (™) 4 sup EM = £,
uel

Fix g € (y, ¢*) arbitrary close to ¢* and set r := ¢/y. By Lemma 6.2, suppose M
large enough so that k,, (¢) < O for every m > M. It is easy to see as in the proof of
Lemma 4.1 that the process

P =) Ag(Xutk = ). k=0,

uel

is a supermartingale under P™ (with respect to the natural filtration (F)r>o0 of X):
indeed, for X(k) = (x;: i € I),

EO[Phk+ D)= Th) | F] = D70 @) Ag-y i),
iel

where the right-hand side is (strictly) negative on the event {€ > k} ={Ji € [: x; >
M}. We will more precisely show the existence of n > 0 sufficiently small such that
the process

G = (T®'" +n(Enk) . k=0,

is a (Fi)k=0-supermartingale under P®™ for any n € N. Then, the result will be readily
obtained from n” E™[(E A k)'] < EW[G (k)] < E™[G(0)] = A,(n) = a], and an
appeal to Fatou’s lemma.

On the one hand, we have

1-v/q
o= ZAq_y(xi) > (Z Aq(xi)>
iel iel

because

’

od/q=v) o o

Agtri) (Aq—y(xi)>q/(q_y) < Ag—y i)

where ¢ /(g — y) > 1 and the right-hand side sums to 1 as i ranges over /. Then, if
we let n > 0 sufficiently small such that ¥,,,(¢) < —rn for every m > M, we deduce
that

E® [F(k +1) ’ }“k] < Tk (1—rpTR) " Liempy) .
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Raising this to the power 1/r = y/q yields

1/r
EO[Pk+1 | ] = 10 (1= 0T R L) = TR =0 liemn,
(1)
by concavity of x +> x!/". On the other hand, the supermartingale property also
implies that (I'(k+1)!/"4-a)" is integrable for every constanta > 0; we may thus apply
the generalized triangle inequality [4, Lemma 1] with the positive, convex increasing

function x > x’, the positive random variable I'(k + 1)!/”, and the probability
P™ (.| F) (under which € A (k + 1) can be seen as a positive constant):

r 1/r
E™ [(I‘(k F DY 4 (EA K+ 1))) ’ }"k]
< EO[Ck+1) | A] +n(EA & +1D).

Reporting (11) shows as desired that (G (k): k > 0) is a supermartingale. O
We are finally ready to derive (10) and complete the proof of Theorem 2.

Proof of (10) We start as in the proof of Theorem 1: thanks to Lemma 3.3 and the
branching property, with high probability as 7 — oo, the connected components of

X\ /'t§1") are included in independent copies of & stemming from the population

x="¢ u € U™, of particles frozen below ne. Specifically,

P (dGH()((n)’ qun)) < (San>
< PO (Gn.e) UM +E | 3 PO (he() > sa )
uelU="

Now, take g, < g < ¢* and M large enough so that both Lemma 6.1 and the results
of Sect. 4 hold. So, there exists a constant C > 0 such that

<ne <ne an
E® |: Z P )(ht(X) - (;an):| — E™ |: Z Pea ) (ht(X) - (Saxugma - ):|
ueclU=ne ueclU=ne Xu

CE® Z ayzne aly )
<ne an
uelU="¢

But we know, thanks to another application of Potter’s bounds, that we may find ¢ > 0

such that
am q/y <C<ﬁ)q* ’
a, - n

IA
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whenever 7 is sufficiently large and m < n. Since xuf’” <n(for0 < e < 1), we can
again conclude by Corollary 4.5 and Lemma 3.3. O
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