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Abstract. We study the first and second orders of the asymptotic expansion, as the
dimension goes to infinity, of the moments of the Hilbert-Schmidt norm of a uniformly
distributed matrix in the p-Schatten unit ball. We consider the case of matrices with
real, complex or quaternionic entries, self-adjoint or not. When p > 3, this asymptotic
expansion allows us to establish a generalized version of the variance conjecture for
the family of p-Schatten unit balls of self-adjoint matrices.

1. Introduction

Let F ..= R, C, or the quaternionic field H. For n ≥ 1, we work on Fn which is seen
as a βn-dimensional vector space over R, with β ∈ {1, 2, 4}. We generically denote
by E either the space Mn(F) of n × n matrices with entries from the field F, or the
subspace of self-adjoint matrices in Mn(F). We view E as a vector space over R,
whose dimension dn depends on n, F, and whether or not we impose self-adjointness
(see (6) below for the exact formula). In any case, we equip E with the Euclidean
structure defined by the Hilbert-Schmidt norm ‖T‖HS

..= (tr(T ∗T ))1/2, and with the
Lebesgue measure denoted by dT . We write |A| for the Lebesgue measure of any Borel
set A ⊆ E, when it is finite.

For every z ∈ Fn, let

‖z‖p ..=

(
n∑
i=1

|zi|p
)1

p

for 1 ≤ p <∞, and ‖z‖∞ ..= max
1≤i≤n

|zi|.

For any matrix T ∈Mn(F), let s(T ) ..= (s1(T ), . . . , sn(T )) ∈ Rn be the tuple of singular
values of T , i.e., the eigenvalues of

√
T ∗T . For every 1 ≤ p ≤ ∞, let σp(T ) = ‖s(T )‖p:

this defines a norm onMn(F), called the p-Schatten norm (see [10, Chapter IV]), and
the corresponding normed space is denoted by Snp , with unit ball

B(Snp ) ..= {T ∈Mn(F) : σp(T ) ≤ 1}.

In the special case p = 2, σ2(T ) = ‖T‖HS and we recover the Euclidean structure.
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Let us note that, when E is a space of self-adjoint matrices, all matrices in E are
diagonalizable, and σp(T ) is then the p-norm of the vector (λ1(T ), . . . , λn(T )) of eigen-
values of T . Taking random Gaussian entries for T then leads to the classical orthogonal
(GOE), unitary (GUE) and symplectic (GSE) ensembles in random matrix theory, see
for instance [32, Chapter 2].

The purpose of this paper is to study the first and second order in the asymptotic
expansion, as n goes to infinity, of the q-inertia moment

(1) Iq(BE(Snp )) ..=
(E ‖T‖qHS)

1/q

|BE(Snp )|1/dn
,

for T uniformly distributed in BE(Snp ) ..= B(Snp )∩E. These quantities appear in various
conjectures in asymptotic geometric analysis that we now present.

1.1. Relevant conjectures in asymptotic geometric analysis. The interplay be-
tween the classical conjectures in asymptotic geometric analysis that are the hyperplane
conjecture, the Kannan-Lovász-Simonovits conjecture and the variance conjecture, is
quite intricate; we state them here briefly to provide context and refer the interested
reader to [1, 12, 25, 31] for an in-depth presentation of the field.

Let K be a symmetric convex body in Rd. The isotropic constant of K is defined by

(2) LK ..= min
det(T )=1

1√
d

(
1

|K|1+ 2
d

∫
K

‖Tx‖2
2 dx

)1
2

,

and its covariance matrix Σ is defined by

Σi,j
..=

1

|K|

∫
K

xixj dx, 1 ≤ i, j ≤ d.

We say that K is in isotropic position when Σ = Id, in which case LK = 1
|K|1/d and the

minimum in Equation (2) is attained for T = Id. The hyperplane conjecture asks for a
uniform upper bound on LK for all symmetric convex bodies and dimensions d, see [25,
33]. The Kannan-Lovász-Simonovits (KLS) conjecture [23] asks for the existence of a
universal constant C such that, for every dimension d, every random vectorX uniformly
distributed on a symmetric convex body K ⊂ Rd, and every smooth function f on Rd,

(3) Var f(X) ≤ C max
θ∈Sd−1

E〈X, θ〉2 · E ‖∇f(X)‖2
2.

This conjecture is satisfied for various families of convex bodies [1], like the unit balls Bn
p

of the classical `np spaces, after [39], or the Orlicz balls after [6, 26]. In a recent break-
through, Yuansi Chen [13], using methods introduced by Eldan in [16] and developed
in [30], proved that inequality (3) is valid for a value C still depending on the dimen-
sion but smaller than any power of d, C = dod(1). Specifying the KLS conjecture to
f(x) = ‖x‖2

2 one gets the following weaker conjecture.
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Generalized variance conjecture. There is a constant C ≥ 1 such that for every
dimension d and for every symmetric convex body K ⊂ Rd, we have

(4) Var ‖X‖2
2 ≤ C max

θ∈Sd−1
E〈X, θ〉2 · E ‖X‖2

2 = C‖Σ‖ · tr(Σ)

where X is uniformly distributed on K and Σ is its covariance matrix.

Klartag [24] proved this conjecture for every unconditional convex bodies, that means
convex bodies which are invariant under coordinate hyperplane reflections, while Barthe
and Cordero [5] studied these questions for convex bodies with more general symmetries.

These conjectures were studied in the particular case of the unit balls of the p-
Schatten normed spaces. König, Meyer and Pajor [27] established the hyperplane
conjecture for these families of particular bodies. Guédon and Paouris [17] proved a
concentration of the volume through the study of the moments of the Hilbert-Schmidt
norm of a random matrix uniformly distributed in BE(Snp ). This method was gener-
alized by Radke and Vritsiou [35] and Vritsiou [41] to prove the generalized variance
conjecture when the space of matrices is equipped with the operator norm, that is the
case p =∞.

1.2. Results. We start by stating a result on the first order in the asymptotic expansion
of Iq(BE(Snp )). We give the exact computation of the limit of Iq(BE(Snp )), correctly
normalized by the square root of the dimension of E as a vector space over R. This
dimension will be denoted by dn.

Theorem 1.1 (Limit of the normalized inertia). Let E beMn(F) or its restriction to
self-adjoint matrices, equipped with the p-Schatten norm for some p ∈ [1,∞). Then for
every q > 0,

(5)
Iq(BE(Snp ))
√
dn

=
(E ‖T‖qHS)

1/q

√
dn |BE(Snp )|1/dn

−−−→
n→∞

e
1
2p
− 3

4

√
p

π(p+ 2)
,

where T is uniformly distributed in BE(Snp ).

In the self-adjoint case, we note that this result can be established as a consequence
of a weak law of large numbers proved by Kabluchko, Prochno and Thäle, [21, Theo-
rem 4.7] combined with a truncation argument [34, Theorem 11.1.2].

The general case is of particular interest, as it allows for instance, for q = 2 and
E = Mn(F), a computation of the limit of the isotropic constant of the unit ball Snp .
Indeed, in this (and only in this) non self-adjoint case, the Schatten unit balls are in
isotropic position [4, 27, 35], so that the left-hand side of (5) is the isotropic constant
defined by (2), and Theorem 1.1 gives the precise value of its limit as n goes to infinity.

Our main result establishes, in the self-adjoint case, the second term in the asymptotic
expansion of the quotient Iq(BE(Snp ))/I2(BE(Snp )).
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Theorem 1.2 (Asymptotic expansion of the q-inertia moment). Let E be the space of
real symmetric, complex Hermitian or Hermitian quaternionic matrices equipped with
the p-Schatten norm for some p ∈ (3,∞). Then for every q > 0,

Iq(BE(Snp ))

I2(BE(Snp ))
= 1 +

(q − 2)(p− 2)2

16p2 dn
+ o

(
1

dn

)
as n goes to infinity, where Iq is defined in (1).

As a corollary, we give a positive answer to the generalized variance conjecture for
these families of convex bodies.

Corollary 1.3 (Variance conjecture in Schatten balls). Let p ∈ (3,∞) and E be
the space of real symmetric, complex Hermitian or Hermitian quaternionic matrices
equipped with the Schatten p-norm. Then, for all n large enough,

Var(‖T‖2
HS) ≤ 1

2
‖Σ‖ · tr(Σ),

where T is uniformly distributed in BE(Snp ) and Σ is the covariance matrix of BE(Snp ).

Indeed, specializing Theorem 1.2 to q = 4, we get

lim
n→∞

dn
Var(‖T‖2

HS)

(E ‖T‖2
HS)

2 =
(p− 2)2

2p2
<

1

2
.

We conclude using that E ‖T‖2
HS = tr(Σ) ≤ dn ‖Σ‖.

1.3. Strategy of proof. Recall that E is eitherMn(F) or the subspace of self-adjoint
matrices inMn(F). Using a strategy developed by Saint-Raymond [37], König, Meyer
and Pajor [27], and pushed further by Guédon and Paouris [17], Radke and Vritsiou [35]
and Kabluchko, Prochno and Thäle [21], we first reduce the computations of Iq(BE(Snp ))
to integrals over Rn with respect to a Gibbs probability measure Pn,p. This distribu-
tion governs a so called β-ensemble consisting of n unit charges interacting through
a logarithmic Coulomb potential and confined with an external potential, see (12).
Kabluchko, Prochno and Thäle [20, 21, 22] have shown that this connection with linear
statistics of β-ensembles allows to establish, when the dimension tends to infinity, exact
asymptotics for the volume of the Schatten unit balls as well as a weak law of large
number for the joint law of the eigenvalues/singular values.

More precisely, defining Ln,p ..= n−1
∑n

i=1 δxi to be the random empirical measure
under Pn,p, see (12), we recall in Lemma 2.2 that the computation of Iq(BE(Snp )) can
be expressed in terms of the normalization constant Zn,p appearing in the definition
of Pn,p, and the moment E 〈Ln,p, h2〉q/2 of the linear statistics associated with the func-
tion h2(x) ..= x2. Thus, the task essentially amounts to estimating asymptotics for the
normalizing constant Zn,p and for these linear statistics associated with the function h2.
Some of these asymptotics are now well understood in the literature on random ma-
trices [9, 18, 19, 34]. Our proof of Theorem 1.1 clarifies the connection between the
first order estimates of Iq(B(Snp )∩E) and the convergence of the empirical distribution
towards the equilibrium measure due to Johansson [19] that we state in Lemma 4.2,
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or Hiai-Petz [18], see Lemma 4.6. To prove Theorem 1.2, we need to understand more
precisely the fluctuations of the linear statistics 〈Ln,p, h2〉 in the self-adjoint case. We
rely here on recent results of Bekerman, Leblé, Serfaty [8] (see also Lambert, Ledoux,
Webb [29]) concerning the CLT for fluctuations of β-ensembles with general potential.
Let us note that in these results, the regularity of the external potential V in the Gibbs
measure Pn,p plays a prominent role. It was assumed to be a polynomial of even degree
with positive leading coefficient in the seminal paper [19]. This condition has then been
relaxed over the last two decades to include real-analytic potentials [11, 28, 38] and,
more recently, potentials of class Cr with r reasonably large [7, 8, 29]. However we are
working in a very specific case where V (x) is proportional to |x|p. Proposition 4.3 states
that the result of [8] applies when p > 3. It is proved by tracing back in the proof of [8]
various places where the regularity of V is needed, in particular to prove regularity of
the solution to a key master equation.

1.4. Organization of the paper. In Section 2, we recall the formulas relating the
q-inertia moment Iq, the normalizing constant Zn,p, and the expected q-moment of the
linear statistics 〈Ln,p, h2〉. We gather, in Section 3, some uniform moment bounds which
are needed to accommodate the fact that we study a linear statistics for the unbounded
function h2. This generalizes a classical truncation argument to all possible parameters
in the density of Pn,p. The proof of our main results is done in Section 4. We postpone
to Section 5 the discussion on technical properties of the equilibrium measure and on
the regularity of the solution to the master equation.

2. Reduction to integrals over Rn

A function F : Rn → R is said to be symmetric if for every x ∈ Rn and every
permutation π on {1, . . . , n} we have F (x1, . . . , xn) = F (xπ(1), . . . , xπ(n)). Let E be
Mn(F) or its restriction to self-adjoint matrices. The following change of variable
formula [2, Propositions 4.1.1 & 4.1.3] makes a connection between the Schatten unit
ball BE(Snp ) and the classical unit `np -ball Bn

p ⊂ Rn: for every symmetric, continuous
function F : Rn → R,∫

BE(Sn
p )

F
(
s(T )

)
dT = cn

∫
Bn

p

F (x) fa,b,c(x)dx,

where cn is a positive constant,

fa,b,c(x) ..=
∏

1≤i<j≤n

∣∣xai − xaj ∣∣b · n∏
i=1

|xi|c, x ..= (x1, . . . , xn) ∈ Rn,

defines a positively homogeneous function of degree dn − n, with

(6) dn ..= dimRE = ab
n(n− 1)

2
+ (c+ 1)n

being the dimension of the subspace E over R. The constant cn is explicit and related
to the volume of the unitary group Un(F); it depends only on a, b and n, and its exact
and asymptotic values are known and given in Lemma 4.7:
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Matrix Ensemble F a b c

real R 2 1 0
complex C 2 2 1

quaternion H 2 4 3

real symmetric R 1 1 0
complex Hermitian C 1 2 0

Hermitian quaternionic H 1 4 0

Table 1. Possible choices for E, and corresponding parameters.

In all cases, b = β = dimR(F). In the self-adjoint cases, a = 1 and c = 0. In the cases where
E =Mn(F), the computations depend on the singular values, a = 2 and c = β− 1. See [2, Chapter 4]
for details.

(7)
√
n · c1/dn

n ∼ e
3
4

√
4π

ab
as n→∞.

Combining this change of variables with a classical trick in convexity leads to the
following expression.

Lemma 2.1 (Change of variables, [17]). For every symmetric, continuous, positively
homogeneous function F : Rn → R of degree k ≥ 0, one has∫

BE(Sn
p )

F
(
s(T )

)
dT =

cn

Γ
(

1 + dn+k
p

) ∫
Rn

F (x) e−‖x‖
p
p fa,b,c(x) dx,

where Γ is Euler’s Gamma function.

We refer to [17] for the details of the computations. Let

(8) γp ..=
Γ
(
p
2

)
Γ
(

1
2

)
2Γ
(
p+1

2

) .
Applying Lemma 2.1 with F ..≡ 1 which is homogeneous of degree 0 yields, after a
straightforward change of variables,

(9)
∣∣BE(Snp )

∣∣ = (abnγp)
dn
p · cn

Γ
(

1 + dn
p

) · Zn,p,
where

(10) Zn,p ..=

∫
Rn

e−abnγp‖x‖
p
p fa,b,c(x) dx.

Using now Lemma 2.1 with F (x) ..= (
∑n

i=1 x
2
i )
q/2 which is homogeneous of degree q, we

obtain, for T uniformly distributed in BE(Snp ),

(11) E ‖T‖qHS = (abnγp)
q
p ·

Γ
(

1 + dn
p

)
Γ
(

1 + dn+q
p

) · n q
2

∫
Rn

(
1

n

n∑
i=1

x2
i

)q
2

Pn,p(dx),
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where Pn,p(dx) is the probability measure

(12) Pn,p(dx) ..=
1

Zn,p
· fa,b,c(x) e−abnγp‖x‖

p
p dx, x ∈ Rn.

We conclude this section by expressing the quantities appearing in Theorems 1.1 and 1.2
in terms of the integral of h2(x) ..= x2 with respect to the random empirical measure
Ln,p ..= n−1

∑n
i=1 δxi under Pn,p.

Lemma 2.2 (From inertia to β-ensembles). For every q > 0, we have as n→∞,

(13)
1√
dn
Iq(BE(Snp )) ∼ e−

1
p
− 3

4

√
2π

Z−1/dn
n,p

(
E 〈Ln,p, h2〉

q
2

)1
q

and

(14)
Iq(BE(Snp ))

I2(BE(Snp ))
=

(
1− q − 2

abp n2
+ o

(
1

n2

))(
E 〈Ln,p, h2〉q/2

)1/q
(E 〈Ln,p, h2〉)

1/2
.

Proof. Observe that ∫
Rn

(
1

n

n∑
i=1

x2
i

)q
2

Pn,p(dx) = E 〈Ln,p, h2〉
q
2 .

By combining (11) and (9), the quantity appearing in Theorem 1.1 is

1√
dn
Iq(BE(Snp )) =

1√
dn

(E ‖T‖qHS)
1/q

|BE(Snp )|1/dn

=
1√
dn

 Γ
(

1 + dn
p

)
Γ
(

1 + dn+q
p

)


1
q

Γ
(

1 + dn
p

) 1
dn

c
1/dn
n Z

1/dn
n,p

√
n
(
E 〈Ln,p, h2〉

q
2

)1
q
,

∼
√

2

abn
e−

1
p c−1/dn

n Z−1/dn
n

(
E 〈Ln,p, h2〉

q
2

)1
q
,

using that dn ∼ abn2/2 as n → ∞, Γ(1 + x)
1
x ∼ x/e and Γ(1 + x + α)/Γ(1 + x) ∼ xα

as x→∞, for any fixed number α. Thus, by the asymptotics of cn in (7),

1√
dn
Iq(BE(Snp )) ∼ e−

1
p
− 3

4

√
2π

Z−1/dn
n,p

(
E 〈Ln,p, h2〉

q
2

)1
q
.

Regarding the quantity involved in Theorem 1.2, two applications of (11) give
Iq(BE(Snp ))

I2(BE(Snp ))
=

(E ‖T‖qHS)1/q

(E ‖T‖2
HS)1/2

=

Γ
(

1 + dn+q
p

)
Γ
(

1 + dn
p

)
−

1
q

·

Γ
(

1 + dn+2
p

)
Γ
(

1 + dn
p

)


1
2

·
(
E 〈Ln,p, h2〉q/2

)1/q
(E 〈Ln,p, h2〉)

1/2
.
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It is also well known [40, (3.23), p. 62] that as x→∞,

Γ(1 + x) = xx+ 1
2 e−x

√
2π exp

(
1

12x
+ o

(
1

x2

))
.

Since dn ∼ abn2/2 we get that for any fixed r > 0 and p ≥ 1,Γ
(

1 + dn+r
p

)
Γ
(

1 + dn
p

)
−

1
r

=

(
dn
p

)− 1
p

·
(

1− p+ r

abp n2
+ o

(
1

n2

))
.

Therefore, for any p ≥ 1 and q > 0,Γ
(

1 + dn+q
p

)
Γ
(

1 + dn
p

)
−

1
q

·

Γ
(

1 + dn+2
p

)
Γ
(

1 + dn
p

)


1
2

= 1− q − 2

abp n2
+ o

(
1

n2

)
,

which finishes the proof of (14). �

3. Moment bounds

Recall that Pn,p(dx) is the probability measure whose density is defined on Rn by

Pn,p(dx) ..=
1

Zn,p
· fa,b,c(x) e−abnγp‖x‖

p
p dx, where fa,b,c(x) ..=

∏
1≤i<j≤n

∣∣xai − xaj ∣∣b · n∏
i=1

|xi|c.

In this section we consider a more general case where a is a positive integer, b > 0 and
c ≥ 0. Prior to evaluating their asymptotics, we need to establish some uniform bounds
on the quantities

(15)
(
E 〈Ln,p, hr〉

)1
r

=

(∫
Rn

|x1|r Pn,p(dx)

)1
r

where hr(x) ..= |x|r. The evaluation of (15) in the case r = 2 is the crucial part of
the proof in [27] while it was also studied for larger values of r in [17]. We prove here
a stronger result. Following the method of proof of Theorem 11.1.2 (i) in [34], which
corresponds to the case a = 1 and c = 0, we establish an upper bound of the tail of the
first marginal density of Pn,p(dx) denoted by pn(x1) and defined by

pn(x1) ..=
1

Zn,p

∫
Rn−1

fa,b,c(x1, . . . , xn) e−abnγp
∑n

i=1 |xi|p dx2 · · · dxn.

Theorem 3.1 (Moment and tail bounds on the first marginal). Let p ≥ 1 and R > 0.
Then there exist constants C,C ′, C ′′, X1, c1, c

′ > 0 depending only on a, b, c and on p,R
such that, for every n ≥ 1:

(i) for every |x1| ≥ X1,
pn(x1) ≤ e−c1n|x1|

p

;
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(ii) for every r ≥ 1, (∫
Rn

|x1|r Pn,p(dx)

)1
r

≤ X1 + C
( r
n

) 1
p
,

and thus

∀1 ≤ r ≤ Rn,

(∫
Rn

|x1|r Pn,p(dx)

)1
r

≤ C ′′;

(iii) for every i = 1, . . . , n, and every B ≥ X1,

Pn,p(|xi| ≥ B) ≤ C ′ e−c
′nBp

.

Proof. The proof of (i) goes into three steps.
1) We first prove that there exists a constant C1 > 0 independent of the dimension
such that ∫

Rn

|x1|p Pn,p(dx) =

∫
R
|x1|p pn(x1)dx1 ≤ C1.

The proof of this inequality follows the lines of the proof of Corollary 7(a) in [17]. For
t > 0, we define

g(t) ..=

∫
Rn

fa,b,c(x) e−tabnγp‖x‖
p
p dx.

Then g(1) = Zn,p. Changing variable by putting x ← t−1/py and using that fa,b,c is
positively homogeneous of degree dn − n, where dn ..= abn(n− 1)/2 + (c+ 1)n, we get

g(t) = t−n/p
∫
Rn

fa,b,c(t
−1/py) e−abnγp‖y‖

p
p dy = t−dn/pg(1).

It follows that g′(1) = −dn
p
g(1). On the other hand, differentiating the integral formula

which defines g(t), we also get

g′(1) = −abnγp
∫
Rn

‖x‖pp fa,b,c(x) e−abnγp‖x‖
p
p dx

= −abn2γp

∫
Rn

|x1|p fa,b,c(x) e−abnγp‖x‖
p
p dx.

We conclude that∫
Rn

|x1|p Pn,p(dx) =

∫
R
|x1|p pn(x1)dx1 = − g′(1)

g(1)abn2γp
=

dn
abpn2γp

.

It follows that
∫
Rn |x1|p Pn,p(dx)→ 1/(2pγp) as n→∞ and therefore is upper bounded

by a constant C1.
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2) In the second step we prove that there exist c2, X2 > 0 independent of the dimension
such that, for all |x1| ≥ X2,

pn(x1) ≤ Zn−1,p

Zn,p
e−c2n|x1|

p

.

For x ∈ Rn, we denote

gn(x) ..= Zn,p
Pn,p(dx)

dx
=
∏

1≤i<j≤n

∣∣xai − xaj ∣∣b · n∏
i=1

|xi|c · e−tabnγp‖x‖
p
p .

For x̃ ..= (x2, . . . , xn) ∈ Rn−1 and x ..= (x1, x̃), using that n‖x‖pp = n|x1|p+(n−1)‖x̃‖pp+
‖x̃‖pp we get

gn(x) = gn(x1, x̃) = gn−1(x̃) e−abnγp|x1|
p

e−abγp‖x̃‖
p
p |x1|c

n∏
i=2

|xai − xa1|
b.

Hence

(16)

1

Zn−1,p

∫
Rn−1

gn(x1, x̃)dx̃

= |x1|c e−abnγp|x1|
p

∫
Rn−1

e−abγp‖x̃‖
p
p

n∏
i=2

|xai − xa1|
b Pn−1,p(dx̃).

Using that for any x, y ∈ R one has |x− y| ≤ |x|+ |y| ≤ (1 + |x|)(1 + |y|), and letting
D2

..= maxt∈R e−abγpt
p
(1 + |t|a)b, we have

Zn,p
Zn−1,p

pn(x1) =
1

Zn−1,p

∫
Rn−1

gn(x1, x̃)dx̃ ≤ |x1|c e−abnγp|x1|
p

(1 + |x1|a)(n−1)bDn−1
2 .

We conclude that for c2 = abγp/2 there exists X2 > 0 independent of the dimension
such that, for |x1| ≥ X2,

pn(x1) ≤ Zn−1,p

Zn,p
e−c2n|x1|

p

.

3) In the third step, we establish that there exists c3 > 0 such that Zn−1,p

Zn,p
≤ e−c3n.

Integrating equation (16) with respect to x1 ∈ R we get

(17)

1

Zn−1,p

∫
Rn

gn(x)dx

=

∫
R
|x1|c e−abnγp|x1|

p

∫
Rn−1

e−abγp‖x̃‖
p
p

n∏
i=2

|xai − xa1|
b Pn−1,p(dx̃)dx1.

Applying Jensen’s inequality to the integral on Rn−1 with the probability measure Pn−1,p

and the convex function being the exponential, and applying also the bound obtained
in Step 1, we have
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e−abγp‖x̃‖

p
p

n∏
i=2

|xai − xa1|
b Pn−1,p(dx̃)

≥ exp

∫ (
−abγp‖x̃‖pp + b

n∑
i=2

log |xai − xa1|

)
Pn−1,p(dx̃)

≥ exp

(
−(n− 1)abγpC1 + b

∫ n∑
i=2

log |xai − xa1|Pn−1,p(dx̃)

)
.

Plugging this inequality into Equation (17) and noticing that the left-hand side is equal
to Zn,p/Zn−1,p we get

Zn,p
Zn−1,p

≥ e−(n−1)abγpC1

∫ 1
2

− 1
2

|x1|c e−abnγp|x1|
p

exp

(
b

∫ n∑
i=2

log|xai − xa1|Pn−1,p(dx̃)

)
dx1.

Applying again Jensen’s inequality but with the uniform probability measure on [−1
2
, 1

2
]

we deduce that

Zn,p
Zn−1,p

≥ e−(n−1)abγpC1 exp

∫ 1
2

− 1
2

(
c log |x1| − abnγp|x1|p

+b

∫ n∑
i=2

log|xai − xa1|Pn−1,p(dx̃)

)
dx1.

We then use Fubini’s theorem and thus want to estimate from below the function ga
defined for a ≥ 1 being an integer and x ∈ R by

ga(x) ..=

∫ 1
2

− 1
2

log |xa − ya| dy.

Namely we shall prove that ga(x) ≥ −a(2 log 2 + 1). First notice that for a even the
function (x, y) 7→ xa− ya is even in both variables, and for a odd, splitting the integral
and changing variable one has

ga(x) =

∫ 1
2

0

(
log |xa − ya|+ log |xa + ya|

)
dy =

∫ 1
2

0

log |x2a − y2a| dy =
1

2
g2a(x).

We are thus reduced to proving the lower bound of ga in the case where a is even. Then
the function ga is even so we may assume that x ≥ 0 and we have

ga(x) = 2

∫ 1
2

0

log |xa − ya| dy.

For x ≥ 1
2
the function ga is increasing hence ga(x) ≥ ga(1/2). Moreover for every

x, y > 0 one has |xa − ya| ≥ ya−1|x− y|, thus

ga(x) ≥ 2

∫ 1
2

0

(
(a− 1) log y + log |x− y|

)
dy.



12 B. DADOUN, M. FRADELIZI, O. GUÉDON, AND P.-A. ZITT

Let ϕ be the convex function defined by ϕ(x) = x log x for x ≥ 0. A simple calculation
shows that, for every 0 ≤ x ≤ 1

2
,

ga(x) ≥ −(a− 1)(log 2 + 1) + 2ϕ(x) + 2ϕ

(
1

2
− x
)
− 1.

From the convexity of ϕ, one has

ϕ(x) + ϕ

(
1

2
− x
)
≥ 2ϕ

(
x+ 1

2
− x

2

)
= 2ϕ

(
1

4

)
= −log 2.

We conclude that ga(x) ≥ −a(2 log 2 + 1). Applying this inequality in the lower bound
of Zn,p/Zn−1,p we deduce that

Zn,p
Zn−1,p

≥ exp

(
−(n− 1)abγpC1 − (2 log 2 + 1)

(
c+ (n− 1)ab)

)
− nabγp

(p+ 1)2p

)
≥ e−c3n,

where c3
..= abγpC1 + (2 log 2 + 1)(c+ ab)) + abγp

(p+1)2p
, which finishes our third step. The

final conclusion follows from combining the steps 2 and 3 which give that for every
|x1| ≥ X2, one has

pn(x1) ≤ Zn−1,p

Zn,p
e−c2n|x1|

p ≤ e−c3n−c2n|x1|
p

.

Hence there exist c1, X1 > 0 such that pn(x1) ≤ e−c1n|x1|
p for all |x1| ≥ X1.

(ii) The upper bound for the moment using the bound for the tail is standard and runs
as follows. We first cut the integral into two parts and use the bound proved in (i):∫

Rn

|x1|r Pn,p(dx) =

∫
R
|t|r pn(t) dt ≤ Xr

1

∫
|t|≤X1

pn(t)dt+

∫
|t|≥X1

|t|r e−c1n|t|
p

dt

≤ Xr
1 + 2

∫ ∞
0

tr e−c1nt
p

dt.

Changing variable, this last integral may be written as follows:∫ ∞
0

tr e−c1nt
p

dt =
1

p(c1n)
r+1
p

∫ ∞
0

s
r+1
p
−1 e−s ds =

1

p(c1n)
r+1
p

Γ

(
r + 1

p

)
.

Using a standard bound on the Gamma function we conclude that there exists C > 0
such that(∫

Rn

|x1|r Pn,p(dx)

)1
r

≤ X1 +

(
2

p(c1n)
r+1
p

Γ

(
r + 1

p

))1
r

≤ X1 + C
( r
n

)1
p
.

(iii) Using the bound (i), for B > X1 and choosing c′ ..= c1/2, we have

Pn,p(|xi| ≥ B) ≤ 2

∫ ∞
B

e−c1nt
p

dt ≤ 2 e−c
′nBp

∫ ∞
0

e−c
′ntp dt ≤ C ′ e−c

′nBp

. �
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Because of the above uniform bounds, the random measure Ln,p is mostly concen-
trated on a compact interval. As a result, testing Ln,p against a general function f is
on average not very different from using a truncated version of f instead.

Corollary 3.2 (Truncation argument). Choose X1 ≥ 1 as in Theorem 3.1. Let B ≥ X1

and let φ : R → [0, 1] be a smooth, compactly supported function such that φ ≡ 1 on
[−B,B]. Then for all continuous, polynomially bounded functions f, g : R → R, one
has

E
∣∣∣g(〈Ln,p, f〉)− g(〈Ln,p, fφ〉)∣∣∣ = O(αn),

where α ..= e−
c′Bp

2 < 1.

Proof. As f and g are polynomially bounded, there exist constants A1, A2, s, t ≥ 1 such
that for every y ∈ R, |f(y)| ≤ A1 + |y|s and |g(y)| ≤ A2 + |y|t. Hence, we can find
constants A, r ≥ 1 such that, for every x ∈ Rn,

|g(〈Ln,p(x), f〉)| =

∣∣∣∣∣g
(

1

n

n∑
i=1

f(xi)

)∣∣∣∣∣ ≤ A+
1

n

n∑
i=1

|xi|r = A+ 〈Ln,p(x), hr〉

(e.g., A ..= 2tA1 +A2 and r ..= st, using Jensen’s inequality). Since 0 ≤ φ ≤ 1 on R, we
get the same bound for

|g(〈Ln,p(x), fφ〉)| ≤ A+ 〈Ln,p(x), hr〉.
As φ ≡ 1 on [−B,B],

|g(〈Ln,p(x), f〉)− g(〈Ln,p(x), fφ〉)| ≤ 21{∃i:|xi|>B}
(
A+ 〈Ln,p(x), hr〉

)
.

Since r is a constant, we have by Theorem 3.1.(ii),

E 〈Ln,p(x), hr〉2 = E

(
1

n

n∑
i=1

|xi|r
)2

≤ E
1

n

n∑
i=1

|xi|2r ≤ C ′′2r.

Combining Theorem 3.1.(iii) with a union bound,

Pn,p(∃i : |xi| > B) ≤ nC ′ e−c
′nBp

.

Therefore, by Cauchy-Schwarz inequality, we conclude that

E
∣∣∣g(〈Ln,p, f〉)− g(〈Ln,p, fφ〉)∣∣∣ ≤ 2nC ′ e−c

′nBp

(A+ C ′′r).

This is O(αn) with e.g. α = e−
c′Bp

2 . �

4. Asymptotics

In this section, we prove Theorems 1.1 and 1.2 by completing the asymptotic expan-
sions initiated in Lemma 2.2. As previously explained, we will appeal to the literature
on random matrices, as Ln,p corresponds to the empirical distribution of the so called β-
ensemble with potential V (x) ∝ |x|p and Zn,p is the so called partition function. We
split the discussion into two cases, according to Table 1. In the first case (a = 1), we
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prove both Theorems 1.1 and 1.2, where matrices in BE(Snp ) all have symmetries with
respect to their diagonal and Ln,p thus corresponds to empirical distributions of real
eigenvalues. The second case (a = 2) pertains to Theorem 1.1 only and is treated more
conveniently by working with R+-valued measures.

4.1. The self-adjoint case (a = 1). In view of Table 1, we have a = 1, b = dimR(F)
and c = 0. Hence, from (12), the probability measure Pn,p can be written as a Gibbs
measure

(18) Pn,p(dx) =
1

Zn,p
· e−

b
2
n2Hn,p(x) dx,

with the Hamiltonian

Hn,p(x) ..=
2

n

n∑
i=1

γp|xi|p −
1

n2

∑
i 6=j

log |xi − xj|,

where γp is defined in (8). Heuristically this Hamiltonian is approximated as n → ∞
by

Ip(µ) ..= 2

∫
R
γp|x|p µ(dx)−

∫∫
R2
6=

log |x− y|µ(dx)µ(dy),

where R2
6=

..= {(x, y) ∈ R2 : x 6= y}, provided that the probability measure µ is suffi-
ciently close to the empirical measure Ln,p(x) ..= n−1

∑n
i=1 δxi . Thus, because of (18),

we expect that Ln,p concentrates as n → ∞ around a probability measure minimizing
the functional Ip. This idea constitutes the cornerstone of large deviation principles for
the empirical spectral distribution of large random matrices, as originally derived by
Ben Arous and Guionnet [9]. The next two lemmas formalize what we need. We refer
to the textbooks [14, Chapter 6] and [2, Section 2.6] or the recent article [15] for deeper
results.

Lemma 4.1 (Equilibrium measure). There exists a unique element µp minimizing the
functional Ip over the space P(R) of real probability measures:

inf
µ∈P(R)

Ip(µ) = Ip(µp).

Furthermore, µp has the following properties:

(i) µp is compactly supported, with support [−1, 1];
(ii) µp is absolutely continuous with respect to the Lebesgue measure, with density

fp(x) ..=
p|x|p−1

π

∫ 1

|x|

v−p√
1− v2

dv, |x| ≤ 1;

(iii) Ip(µp) = log 2 + 3
2p
.

Proof. The existence and uniqueness of the minimizer µp follows from [36, Theorem I.1.3]
with the weight function w : x 7→ exp(−γp|x|p) on R. Properties (i)–(iii) are provided
by [36, Theorem IV.5.1]. We have rewritten the density with the change of variable
v ← |x|/u. �
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Lemma 4.2 (Convergence towards the equilibrium measure). Let Ln,p be the empirical
measure of x drawn from the probability Pn,p defined in (18). Then:

(i) For every continuous, polynomially bounded functions f, g : R→ R, it holds that

lim
n→∞

E g(〈Ln,p, f〉) = g(〈µp, f〉).

(ii) We have

lim
n→∞

− 1

dn
logZn,p = log 2 +

3

2p
,

where the normalizing constant Zn,p is defined in (18).

Proof. (i) By Corollary 3.2, we may reduce to f bounded. Thus the random variable
g(〈Ln,p, f〉) is uniformly bounded, and letting ∆n,p(f) ..= 〈Ln,p, f〉− 〈µp, f〉 we see from
the Borel-Cantelli lemma and the dominated convergence theorem that it suffices to
show that

∞∑
n=1

P(|∆n,p(f)| > εn) <∞,

for some null sequence (εn). Thanks to [19, Theorem 2.1], we have that

αn ..=
1

n
logE exp

(
n|∆n,p(f)|

)
−−−→
n→∞

0.

Choosing now εn as, e.g., εn ..= αn/2 + (log n)/n, we see from Markov’s inequality that

P(|∆n,p(f)| > 2εn) = P(exp(n|∆n,p(f)|) > exp(2nεn)) = O
(
e−(2εn−αn)n

)
= O

(
1

n2

)
,

and the first point of the lemma is proved.

(ii) This point follows from [19, Corollary 4.3] and Lemma 4.1.(iii). �

We now have all the ingredients to give a simple proof of Theorem 1.1 in the case
a = 1.

Proof of Theorem 1.1, case a = 1. We start by recalling (13): as n→∞,

1√
dn
Iq(BE(Snp )) ∼ e−

1
p
− 3

4

√
2π

Z−1/dn
n,p

(
E 〈Ln,p, h2〉

q
2

)1
q
.

By Lemma 4.2, we have Z−1/dn
n,p → 2 e

3
2p and

lim
n→∞

E 〈Ln,p, h2φ〉
q
2 = 〈µp, h2φ〉

q
2 .

Plugging in the value of 〈µp, h2〉 computed in Lemma 5.1, we conclude that

lim
n→∞

1√
dn
Iq(BE(Snp )) = e

1
2p
− 3

4

√
p

π(p+ 2)
. �
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The proof of Lemma 4.2 informs us rather poorly on the speed of convergence of the
linear statistics 〈Ln,p, f〉 towards 〈µp, f〉. In fact, a necessary condition for Theorem 1.2
to hold is

Var 〈Ln,p, h2〉 = O

(
1

n2

)
,

so we expect that 〈Ln,p, h2〉 − 〈µp, h2〉 = O(n−1). Besides, to identify the actual limit
in Theorem 1.2, we need to understand precisely the asymptotic behavior of the fluc-
tuations n(〈Ln,p, h2〉 − 〈µp, h2〉).

There has been an increasing wealth of literature on such fluctuations of linear statis-
tics. Given a general potential V , let Ln ..= n−1

∑n
i=1 δxi be the empirical distribution

associated with an ensemble x ..= (x1, . . . , xn) ∈ Rn of particles which are subject to
the confining potential V and pairwise repulsive logarithmic interaction. Then, the
convergence to a Gaussian distribution as n→∞ of the random variable

(19) Fn(ξ) ..= n
(
〈Ln, ξ〉 − 〈µV , ξ〉

)
,

where ξ is a given test function and µV is the equilibrium distribution, has been widely
studied. The regularity of the external potential V plays a prominent role. It was
assumed to be a polynomial of even degree with positive leading coefficient in the
seminal paper of Johansson [19]. This condition has then been relaxed during the last
two decades to include real-analytic potentials [11, 28, 38] and, more recently, potentials
of class Cr with r reasonably large [7, 8, 29].

In our setting (specifically, of Theorem 1.2), the potential is V = Vp ..= 2γphp with a
lack of regularity at 0, the β-ensemble x has the distribution Pn,p with a = 1, b = β,
and c = 0 (cf. (18)), and the equilibrium measure µV is of course the probability
distribution µp of Lemmas 4.1 and 4.2. We only need to establish the central limit
theorem for ξ = h2, that is the convergence of Fn(h2). As Vp is not always a polynomial
nor real-analytic, we choose to work with the currently most general version due to
Bekerman, Leblé and Serfaty [8]. Like in Johansson [19], the central limit theorem is
obtained by establishing convergence of the moment generating function (a.k.a. Laplace
transform) of (19).

Proposition 4.3 (Fluctuations of the linear statistics). Let p ∈ (3,∞) and let

Fn,p ..= n
(
〈Ln,p, h2φ〉 − 〈µp, h2〉

)
,

with φ being the truncation function of Corollary 3.2. Then (F 2
n,p)n≥1 is uniformly

integrable, i.e.,
lim
K→∞

lim sup
n→∞

EF 2
n,p1{F 2

n,p>K} = 0.

Furthermore, lim
n→∞

VarFn,p = 1
4b
.

Remark 4.4. When p ≥ 6, this proposition is a direct consequence of [8, Theorem 1].
Indeed, we are in the so called “one cut” regime which corresponds to m = n = k = 0,
and we remark that ξ = h2φ is C∞ and V = Vp is C6 when p ≥ 6.
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Observe that for p ≥ 8, this is also a direct consequence of the CLT of Lambert,
Ledoux, and Webb [29, Theorem 1.2], which they derived alternatively using Stein’s
method.

Proof. To explain why it is enough to assume p > 3, and for the sake of clarity, we
reproduce the key arguments of Bekerman, Leblé and Serfaty [8], introducing in partic-
ular the key master equation (21), and underlining where the regularity of its solution
is required.

The goal is to prove that, when p ∈ (3,∞), the moment generating function of Fn,p
converges to that of a Gaussian variable N with variance 1/4b, that is, there exists
mp

..= mp(h2φ) ∈ R such that

(20) lim
n→∞

E esFn,p = exp

(
smp +

s2

2

(
1

4b

))
holds for all s ∈ R with |s| sufficiently small. It entails the convergence in distribu-
tion of Fn,p towards N ∼ N (mp,

1
4b

), together with the convergence of all moments
EF k

n,p → ENk, k ∈ N. In particular, (F 2
n,p)n≥1 will be uniformly integrable and

limn→+∞VarFn,p = 1/4b.

First, by Theorem 3.1.(iii) and the union bound, we can choose B > 1 sufficiently
large such that Pn,p(∃i ≤ n : |xi| ≥ B) ≤ C ′n e−c

′nBp for some constants c′, C ′ > 0.
Observing that ‖Fn,p(h2φ)‖∞ = O(n) we deduce that as soon as |s| is sufficiently small,

lim
n→∞

E esFn,p1{∃i≤n:|xi|≥B} = 0.

Thus, we may restrict to x ∈ Un
0 with U0

..= (−B,B). Now, the strategy, adopted in [8]
and developed already in [19], is to perturb the Hamiltonian Hn,p in (18) as follows:

H t
n,p(x) ..= Hn,p(x) +

t

n

n∑
i=1

x2
i =

1

n

n∑
i=1

(
Vp(xi) + tx2

i

)
− 1

n2

∑
1≤i 6=j≤n

log |xi − xj|,

where we have set t ..= − 2s
bn
. Then, we write

E esFn,p = o(1) + e−sn〈µp,h2〉 E esn〈Ln,p,h2〉1Un
0

= o(1) +
e−sn〈µp,h2〉

Zn,p

∫
Un
0

e−
b
2
n2Ht

n,p(x) dx.

Next, one applies in the last integral a change of variables xi ← ϑt(yi) for 1 ≤ i ≤ n
and for some well-chosen C1-diffeomorphism ϑt : Ut → U0 depending on t. We get

E esFn,p = o(1) +
e−sn〈µp,h2〉

Zn,p

∫
Un
t

e−
b
2
n2Ht

n,p◦ϑt(y)

n∏
i=1

|ϑ′t(yi)| dy

= o(1) + e−sn〈µp,h2〉 E e−
b
2
n2(Ht

n,p◦ϑt−Hn,p)+n〈Ln,p,log |ϑ′t|〉1Un
t
.

The idea is that, for a judicious choice of ϑt, the exponent in the last expectation
becomes simple enough to establish the convergence towards the moment generating
function of a Gaussian distribution. The diffeomorphism is chosen as ϑt(y) ..= y+tψp(y)
where, in our setting, ψp : R→ R is the solution to the equation
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(21) Ξpψ =
1

2
h2 + ch2

for some constant ch2 , where Ξp is the so called “master operator” acting on C1 functions
and defined for x ∈ R by

Ξpψ(x) = −1

2
V ′p(x)ψ(x) +

∫
ψ(x)− ψ(y)

x− y
µp(dy).

We show in Section 5.2 that ψp is an odd function, we give its explicit expression and
check that it is of class Cdpe−1 ⊂ C1. Then, by the local inversion theorem, ϑt = Id +tψp
becomes a C1-diffeomorphism Ut → U0 provided |t| = 2|s|/bn ≤ τ is sufficiently small
(equivalently, n is sufficiently large), and we have

(22) E esFn,p = o(1) + e−sn〈µp,h2〉 E e−
b
2
n2(Ht

n,p◦ϑt−Hn,p)+n〈Ln,p,log (1+tψ′p)〉1Un
t
,

where Ut ..= (−At, At) and ϑt(At) = At + tψp(At) = B. Furthermore, we know from
the implicit function theorem that At, |t| ≤ τ , depends continuously on t, and thus
choosing τ small enough we can assume that 1 < inf |t|≤τ At < sup|t|≤τ At <∞.

The remaining of the proof is to Taylor-expand as t → 0 (i.e., n → ∞) the terms
H t
n,p ◦ ϑt − Hn,p and log (1 + tψ′p) appearing in the right-hand side of (22) up to the

order O(t3). After a rather lengthy but not difficult calculation (see [8, Section 4]), and
using that ψp solves (21), we obtain that

(23) E esFn,p = o(1) + esmp+ s2

2
Σ2(h2) E exp

{
− s
n
An[ψp] +O(nt2) +O(n2t3)

}
1Un

t
,

where O(nt2) and O(n2t3) are random quantities converging uniformly to 0 as n→∞
(recall that t ..= − 2s

bn
), mp

..= 〈µp, ψ′p〉 is the limiting mean,

Σ2(h2) ..=
1

2bπ2

∫ 1

−1

∫ 1

−1

(x+ y)2(1− xy)
√

1− x2
√

1− y2
dxdy

is the limiting variance, and, lastly,

An[ψp] ..= n2

∫∫
ψp(x)− ψp(y)

x− y
(Ln,p − µp)(dx)(Ln,p − µp)(dy)

is the so called anisotropy term. A careful inspection of the proof of [8, Proposition 5.4]
shows that, for |s| sufficiently small,

(24) lim
n→∞

logE exp
{
− s
n
An[ψp]

}
= 0

holds provided ψp is of class C3. This is true as soon as p > 3; we postpone the proof of
this key technical point to Section 5.2, see Lemma 5.3. Note that (24) is the only place
where the hypothesis p > 3 is used. It then follows by the Cauchy-Schwarz inequality
that the expectation in the right-hand side of (23) tends to 1. As the value of Σ2(h2)
simplifies to 1/4b thanks to Lemma 5.2, this establishes (20). �

We can now give a proof of Theorem 1.2.
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Proof of Theorem 1.2. Recall the earlier computation (14) (with a = 1): as n→∞,

(25)
Iq(BE(Snp ))

I2(BE(Snp ))
=

(
1− q − 2

bpn2
+ o

(
1

n2

))(
E 〈Ln,p, h2〉q/2

)1/q
(E 〈Ln,p, h2〉)

1/2
.

We must expand both the numerator and denominator of that latter fraction. By
Corollary 3.2, referring to the truncation function φ there, we may replace h2 by h2φ
as this only induces an o(n−2) error:

(26)
E 〈Ln,p, h2〉q/2

(E 〈Ln,p, h2〉)
q/2

=
E 〈Ln,p, h2φ〉q/2 + o( 1

n2 )(
E 〈Ln,p, h2φ〉+ o( 1

n2 )
)q/2 .

Applying Taylor-Lagrange’s formula to the function x 7→ xq/2 between x0
..= 〈µp, h2〉 > 0

and x0 + h yields∣∣∣∣(x0 + h)
q
2 − xq/20 − q

2
hx

q/2−1
0 − q(q − 2)

8
h2x

q/2−2
0

∣∣∣∣1{|h|≤x0
2
} ≤ Cq,x0 |h|3,

for some constant Cq,x0 depending on q and x0. Up to enlarging Cq,x0 , we also have∣∣∣∣xq/20 +
q

2
hx

q/2−1
0 +

q(q − 2)

8
h2x

q/2−2
0

∣∣∣∣1{|h|>x0
2
} ≤ Cq,x0 h

21{|h|>x0
2
}.

We write 〈Ln,p, h2φ〉 = x0 + h with h ..= 1
n
Fn,p = 〈Ln,p, h2φ〉 − 〈µp, h2〉 and note that

|h| ≤ ‖h2φ‖∞ + x0. Then, on the one hand, using the above inequalities according to
whether |h| ≤ x0/2 or |h| > x0/2 gives

n2

∣∣∣∣∣E 〈Ln,p, h2φ〉
q
21{|Fn,p|≤nx0

2
} − x

q/2
0 − qx

q/2−1
0

2n
EFn,p −

q(q − 2)x
q/2−2
0

8n2
EF 2

n,p

∣∣∣∣∣
≤ Cq,x0

(
E |Fn,p|3

n
+ EF 2

n,p1{|Fn,p|>nx0
2
}

)

≤ Cq,x0

(
K3/2

n
+ (‖h2φ‖∞ + x0)EF 2

n,p1{F 2
n,p>K} + EF 2

n,p1{|Fn,p|>nx0
2
}

)

≤ Cq,x0

(
K3/2

n
+ (‖h2φ‖∞ + x0 + 1)EF 2

n,p1{F 2
n,p>K}

)
,(27)

for any 0 < K ≤ n2x2
0/4. On the other hand, for such n and K,

(28) n2 E 〈Ln,p, h2φ〉
q
21{|Fn,p|>nx0

2
} ≤

4

x2
0

‖h2φ‖q/2∞ EF 2
n,p1{F 2

n,p>K}.

Proposition 4.3 tells us that the right-hand sides of (27) and (28) vanish (letting n→∞
first then K →∞), and that VarFn,p → 1

4b
as n→∞. Hence, by triangle inequality

E 〈Ln,p, h2φ〉
q
2 = 〈µp, h2〉

q
2

(
1 +

q EFn,p
2n〈µp, h2〉

+
q(q − 2) EF 2

n,p

8n2〈µp, h2〉2
+ o

(
1

n2

))
.

This holds in particular when q = 2, and going back to (26) we get
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E 〈Ln,p, h2〉q/2

(E 〈Ln,p, h2〉)
q/2

=
E 〈Ln,p, h2φ〉q/2 + o( 1

n2 )(
E 〈Ln,p, h2φ〉+ o( 1

n2 )
)q/2

=
1 + q EFn,p

2n〈µp,h2〉 +
q(q−2) EF 2

n,p

8n2〈µp,h2〉2 + o
(

1
n2

)
1 + q EFn,p

2n〈µp,h2〉 + q(q−2) (EFn,p)2

8n2〈µp,h2〉2 + o
(

1
n2

)
= 1 +

q(q − 2)

8〈µp, h2〉2
· VarFn,p

n2
+ o

(
1

n2

)
= 1 +

q(q − 2)(p+ 2)2

8bp2 n2
+ o

(
1

n2

)
,

where we also replaced the value of 〈µp, h2〉 computed in Lemma 5.1. Raising this
expansion to the power 1/q and returning to (25), we obtain

Iq(BE(Snp ))

I2(BE(Snp ))
= 1 +

(q − 2)(p− 2)2

16p2 dn
+ o

(
1

dn

)
,

because dn ∼ bn2/2 (for a = 1). �

4.2. The case E =Mn(F) (a = 2). We suppose in this section that a = 2. We reduce
to measures and integrals over R+ by performing the change of variables yi ..= |xi|2 for
all 1 ≤ i ≤ n. Specifically, the pushforward of Pn,p by the map x ∈ Rn 7→ y ∈ (R+)n is
the probability measure1 with density

P̃n,p(dy) ..=
1

Zn,p
·
∏

1≤i<j≤n

|yi − yj|b ·
n∏
i=1

y
c−1
2

i · e−2bnγp‖y‖p/2p/2 dy, y ∈ (R+)n.

In particular, for every measurable functions f : R+ → R, and g : R→ R,

(29)
∫

(R+)n
g

(
1

n

n∑
i=1

f(yi)

)
P̃n,p(dy) =

∫
Rn

g

(
1

n

n∑
i=1

f
(
x2
i

))
Pn,p(dx).

It is here convenient to work with the empirical probability measure L̃n,p ..= n−1
∑n

i=1 δyi
where y ∈ (R+)n is sampled from P̃n,p, and we note that Corollary 3.2 obviously still
applies with L̃n,p in place of Ln,p. Similarly to the previous section, we introduce

Ĩp(µ) ..= 4

∫
R+

γp|y|p/2 µ(dy)−
∫∫

(R+)26=

log |x− y|µ(dx)µ(dy).

The counterparts of Lemmas 4.1 and 4.2 are as follows.

1The normalizing constant Zn,p remains unchanged; it is just as in (10) but with a = 2.
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Lemma 4.5 (Equilibrium measure). There exists a unique element µ̃p minimizing the
functional Ĩp over the space P(R+) of probability measures on R+:

Ĩp(µ̃p) = inf
µ∈P(R+)

Ĩp(µ).

Furthermore, µ̃p coincides with the image measure of µp by the map x 7→ x2, and it has
the following properties:

(i) µ̃p is compactly supported, with support [0, 1];
(ii) µ̃p is absolutely continuous with respect to the Lebesgue measure, with density

dµ̃p
dy

=
py

p
2
−1

π

∫ 1

√
y

u−p√
1− u2

du, 0 ≤ y ≤ 1;

(iii) Ĩp(µ̃p) = 2 log 2 + 3
p
.

Proof. In the previous section, the minimization over all real probability measures of the
functional Ip corresponding to the weight function w : x 7→ exp(−γp|x|p) gave rise to the
minimizer µp. We are now facing the minimization problem for probability measures on
R+ = {x2 : x ∈ R}, with the weight function being v : y 7→ exp(−2γp y

p/2) = w(
√
y)2.

According to [36, Theorem IV.1.10.(f)], the solution of the latter is simply the image
measure of µp by the map x 7→ x2. From this, (i)–(iii) easily follow. �

Lemma 4.6 (Convergence towards the equilibrium measure).

(i) For every continuous, polynomially bounded functions f, g : R+ → R, it holds
that

lim
n→∞

E g
(
〈L̃n,p, f〉

)
= g(〈µ̃p, f〉).

(ii) We have

lim
n→∞

− 1

dn
logZn,p = log 2 +

3

2p
.

Proof. We apply2 [18, Theorem 5.5.1]. This theorem provides the limit of Z
1/dn
n,p stated

in (ii), as well as a large deviation principle with good rate function b
2

(
Ĩp − Ĩp(µ̃p)

)
for the random probability measures L̃n,p. By the Borel-Cantelli lemma (see e.g. [18,
p. 212] for details), this entails that L̃n,p converges almost surely towards µ̃p in the sense
of weak convergence of probability measures, that is 〈L̃n,p, f〉 → 〈µ̃p, f〉 P-a.s. for every
continuous, bounded function f : R+ → R. As before, point (i) then follows from the
dominated convergence theorem and Corollary 3.2. �

It is now easy to derive a simple proof of Theorem 1.1 in the case a = 2.

2At first sight, the application of Theorem 5.5.1 in [18] seemingly requires that γ(n) ..≡ c−1
2 be

nonnegative (which is not true if c = 0). It appears this condition is stated merely for simplicity and,
referring to the notation there, the proof of the theorem remains valid as long as 2αβ + γ ≥ 0 and
γ > −α.
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Proof of Theorem 1.1, case a = 2. Recalling (13) and taking into account the change
of variable (29), we have

1√
dn
Iq(BE(Snp )) ∼ e−

1
p
− 3

4

√
2π

Z−1/dn
n,p

(
E 〈L̃n,p, h1〉

q
2

)1
q
,

where h1(y) ..= y. Lemma 4.6.(ii) tells us that Z−1/dn
n,p ∼ 2 e

3
2p , while Lemma 4.6.(i)

gives
lim
n→∞

E 〈L̃n,p, h1〉
q
2 = 〈µ̃p, h1〉

q
2 .

Plugging in the value of 〈µ̃p, h1〉 given by Lemma 5.1, we find

1√
dn

(E ‖T‖qHS)
1/q

|BE(Snp )|1/dn
∼ e

1
2p
− 3

4

√
p

π(p+ 2)
. �

4.3. Asymptotics of cn. It remains to establish the asymptotics (7) for the coeffi-
cient cn involved in Weyl’s integration formulas. This is well known from the formulas
given in [2], see for example [22, Lemma 3.3] in the self-adjoint case. We detail the
proof for completeness.

Lemma 4.7 (Asymptotics of cn). We have

√
n · c1/dn

n ∼ e
3
4

√
4π

ab
as n→∞.

Proof. The coefficient cn is related to the volume of the unitary group Un(F). Specifi-
cally, supposing first a = 1, we know after [2, Propositions 4.1.1] that

cn =
|Un(F)|
|U1(F)|n n!

,

where, according to [2, Proposition 4.1.14],

|Un(F)| = (2π)
bn(n+1)

4 · 2n(1− b
2

)

/
n∏
k=1

Γ

(
b

2
k

)
.

Since log Γ(z) = z log z − z + o(z) as z →∞, we have

log Γ

(
b

2
k

)
=
b

2
k log k +

b

2

(
log

b

2
− 1

)
k + o(k), k →∞.

Therefore, using that
∑n

k=1 k log k = 1
2
n2 log n− 1

4
n2 + o(n2) and dn ∼ bn2/2, we find

1

dn
log

n∏
k=1

Γ

(
b

2
k

)
=

1

2
log n+

1

2
log

b

2
− 3

4
+ o(1).

Hence
1

dn
log cn =

1

dn
log |Un(F)|+ o(1) = −1

2
log n+

1

2
log

4π

b
+

3

4
+ o(1),

which leads to the statement in the case a = 1. When a = 2, we have instead dn ∼ bn2

and, after [2, Proposition 4.1.3],
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cn =
|Un(F)|2

|U1(F)|n n!
2−

bn(n−1)
2 .

So the difference with above is that, here,

1

dn
log cn =

2

dn
log |Un(F)| − 1

2
log 2 + o(1)

= −1

2
log n+

1

2
log

2π

b
+

3

4
+ o(1).

The statement in the case a = 2 thus follows. �

Remark 4.8. We can recover the asymptotic volumes of the Schatten unit balls. These
were recently derived in [21, Theorem 3.1] and [20, Theorem 1], completing the much
earlier computations of Saint-Raymond [37]. Indeed, starting from the expression of the
volume of BE(Snp ) in (9) and plugging in the asymptotics of Zn,p (Lemmas 4.2 and 4.6)
and of cn (Lemma 4.7), we find

∣∣BE(Snp )
∣∣ 1
dn = (abnγp)

1
p · c

1/dn
n

Γ
(

1 + dn
p

)1/dn · Z1/dn
n,p ∼ (abnγp)

1
p ·

e3/4
√

4π
nab(

dn
ep

)1/p · 1

2
e−

3
2p .

Hence, because dn ∼ abn2/2,

lim
n→∞

n
1
2

+ 1
p |BE(Snp )|

1
dn = (2pγp)

1
p e

3
4
− 1

2p

√
π

ab
. �

5. Properties of the equilibrium measures

In this section we gather some auxiliary results on the equilibrium measure µp of
Lemma 4.1. We first carry out some easy computations. Next, we establish the regu-
larity of the solution to the master equation occurring in the proof of Proposition 4.3.

5.1. Some integral computations. We recall the notation h2(x) ..= x2, h1(y) ..= y,
and the equilibrium measures µp and µ̃p, see Lemmas 4.1 and 4.5. We further denote
by %(dx) ..= (π

√
1− x2)−11{|x|<1}dx the standard Arcsine distribution on [−1, 1].

Lemma 5.1. We have
〈µp, h2〉 = 〈µ̃p, h1〉 =

p

2p+ 4
.

Proof. First, 〈µp, h2〉 = 〈µ̃p, h1〉 because µ̃p is the image measure of µp by h2. Next we
know [3, Lemma 4.1] that µp is the distribution of AB where A and B are independent
variables with A following % and B following the Beta(p, 1) distribution. We easily
conclude that

〈µp, h2〉 = EA2 · EB2 =
1

2
· p

p+ 2
. �
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Lemma 5.2. We have

1

π2

∫ 1

−1

∫ 1

−1

(x+ y)2(1− xy)
√

1− x2
√

1− y2
dxdy =

1

2
.

Proof. Let X, Y be independent variables with law %. Then the left-hand side is

E (X + Y )2(1−XY ) = E (X + Y )2 − 2EX2 EY 2 − EX3 EY − EX EY 3

=
1

2
,

using that EX = EY = 0 and EX2 = EY 2 = 1
2
. �

5.2. Regularity of the solution to the master equation. We establish the regu-
larity of the solution ψp to the master equation

(30) Ξpψ =
1

2
h2 + ch2 ,

where

Ξpψ(x) ..= −1

2
V ′p(x)ψ(x) +

∫
ψ(x)− ψ(y)

x− y
µp(dy), x ∈ R.

A general expression in terms of the test function and of the equilibrium measure is
given in [8, Lemma 3.3], see also Section B.5 there. The inversion of the master operator
was first achieved in [7, Lemma 3.2]. In our framework, the expression of ψp can be
made quite explicit: first, we compute ch2 = −1/4, and

(31) ψp(x) =


−x
√

1− x2

2πfp(x)
, if |x| ≤ 1,

−|x|
√
x2 − 1

2ζ ′p(x)
, if |x| > 1,

where

(32) fp(x) ..=
pxp−1

π

∫ 1

x

v−p√
1− v2

dv,

is the Lebesgue density of µp which we have already seen in Lemma 4.1.(ii), and ζ ′p is
the odd function given for x > 1 by

ζ ′p(x) ..=
d

dx

(
−
∫

log |x− y|µp(dy) +
1

2
Vp(x)

)
= pxp−1

∫ x

1

v−p√
v2 − 1

dv,(33)

see [36, pp. 240-241]. We further observe the similarity between (32) and (33): applying
the change of variable t← (1− v)/x, we have, for every 0 < x < 1,
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πfp(1− x) =
p(1− x)p−1

π

∫ 1

1−x

u−p√
1− u2

du

= p(1− x)p−1
√
x

∫ 1

0

(1− xt)−p√
2− xt

dt√
t

=
√
xwp(−x),

where we have set

(34) wp(u) ..= p(1 + u)p−1

∫ 1

0

(1 + tu)−p√
2 + tu

dt√
t
, u ≥ −1.

Similarly, we can see that ζ ′p(1 + x) =
√
xwp(x) holds for all x > 0. Because ψp is

odd, we conclude that the solution ψp ∈ C1(R,R) to the equation (30) is more simply
expressed by

(35) ψp(x) = −
x
√

1 + |x|
2wp(|x| − 1)

, x ∈ R.

We denote by dpe the smallest integer greater than or equal to p.

Lemma 5.3 (Regularity of ψp). For every p ∈ (1,∞), the function ψp is of class Cdpe−1.
In particular, it is of class C3 when p > 3.

Proof. Since ψp is odd, it suffices to check the regularity on [0,∞). It is plain that
the function wp in (34) does not vanish on (−1,∞) and, by differentiation under the
integral sign, that it is of class C∞ there. Given (35), it is then clear that ψp is of
class C∞ on (0,∞). It remains to check that ψp has Cdpe−1-regularity at 0+.

Because of the expression (31) and of x 7→
√

1− x2 being smooth at 0, the regularity
of ψp at 0 is equivalent to that of ψ̄p(x) ..= x/fp(x). For 0 < x < y < 1, the Taylor
series

(1− v2)−
1
2 =

∞∑
k=0

(
2n
n

)
4n

v2n

is uniformly convergent on [x, y], and expanding in (32) gives

fp(x) =
pxp−1

π
lim↑
y↑1

∫ y

x

v−p√
1− v2

dv =
p

π

∞∑
n=0

(
2n
n

)
4n

xp−1

∫ 1

x

v2n−p dv,

by the monotone convergence theorem. The latter integral equals −log x if p = 2n+ 1,
and (x2n+1−p − 1)/(p− 2n− 1) otherwise. In any case, there exist constants A,B ∈ R
(possibly zero) such that

g(x) ..= fp(x) + Axp−1 log x+Bxp−1 =
p

π

∑
n≥0

2n+16=p

(
2n
n

)
4n(p− 2n− 1)

x2n
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is decomposed as a power series with radius 1, so g defines a function of class C∞ at 0.
Because, for p > 1, Axp−1 log x + Bxp−1 has Cdpe−2-regularity at 0+, fp is therefore of
class Cdpe−2 at 0+. Then so is 1/fp since fp(0) = g(0) = pπ/(p−1) 6= 0, and we conclude
by Leibniz formula that ψ̄p (and thus ψp) is of class Cdpe−1 at 0+. �
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