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Abstract. We investigate the method of moments for d-regular digraphs and the limiting d-regular
directed tree Td as the number of vertices tends to infinity, in the same spirit as McKay [11] for the
undirected setting. In particular, we provide a combinatorial derivation of the formula for the star
moments (from a root vertex o ∈ Td)

Md(w) :=
∑

v0,v1...,vk−1,vk∈Td
v0=vk=o

Aw1
d (v0, v1)A

w2
d (v1, v2) · · ·Awk

d (vk−1, vk)

with Ad the adjacency matrix of Td, where w := w1 · · ·wk is any word on the alphabet {1, ∗} and A∗
d

is the adjoint matrix of Ad. Our analysis highlights a connection between the non-zero summands
of Md(w) and the non-crossing partitions of {1, . . . , k} which are in some sense compatible with w.

1. Introduction

Counting paths in graphs and other discrete structures is a standard question with applications to
many areas of mathematics, see [10, 2, 18, 17] or the book [4]. In random matrix theory, this question
is typically raised when studying the convergence of empirical spectral distributions (ESDs) through
the method of moments, of which Wigner’s original proof of the semicircular law [16] is a renowned
example. Essentially, for random Hermitian matrices Wn := (Wn(i, j))1≤i,j≤n whose coefficients on
and above the diagonal are i.i.d. with mean 0 and variance 1 (so called Wigner matrices), the different
summands EWn(i1, i2) · · ·Wn(ik, i1) occurring in the expansion of the states ETrW k

n , k ≥ 1, can
be related to certain cycles i1 → · · · → ik → i1 in a graph with vertex set [n] := {1, . . . , n}, and
understanding the combinatorics of these cycles helps to determine how each of those summands
contributes to the k-th moment of the limiting spectral distribution (the semicircle distribution).

In contrast, when Ad,n ∈ {0, 1}n×n is the adjacency matrix of a uniformly sampled graph Gd,n

with n vertices and constant degree d ≥ 2 (that is, Gd,n is a uniform d-regular graph on [n]

and Ad,n(i, j) = 1 if and only if {i, j} is an edge in Gd,n), McKay [11] showed using the same method
that the mean ESD E 1

n

∑n
i=1 δλi(Ad,n) associated with Ad,n’s eigenvalues λ1(Ad,n), . . . , λn(Ad,n) con-

verges weakly (and in moments) towards a certain probability measure µTd
which is now known as

the Kesten–McKay distribution, in the sense that

1

n
E

n∑
i=1

f
(
λi(Ad,n)

)
−−−→
n→∞

∫
f(x)µTd

(dx) (1)

holds for any polynomial or continuous bounded function f : R → R. When f(x) := xk for some
positive integer k, the left-hand side of (1), which can also be written 1

n ETrAk
d,n, coincides with the

expected total number of excursions of length k from a uniformly chosen vertex in Gd,n, while the
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Figure 1. (a) The undirected tree T3 and (b) the directed tree T2.

right-hand side of (1) counts the number of such excursions (from a fixed vertex) in the (infinite)
d-regular tree Td, which is the Cayley graph of the free group with presentation ⟨e1, . . . , ed | e2i = 1⟩,
see Figure 1a. In fact, since the graphs Gd,n converge locally to the tree Td as n → ∞ (i.e., with
respect to the Benjamini–Schramm topology [3]), the convergence (1) of their mean ESDs can be
recovered from Bordenave–Lelarge’s criterion [6].

In the present note, we adapt McKay’s approach to the asymmetric (i.e., oriented) case. Although
the local convergence as n → ∞ of uniform d-regular digraphs Gd,n towards the d-regular directed
tree Td does hold in a similar fashion (w.r.t. the “oriented” Benjamini–Schramm topology), it does
not imply the convergence of ESDs anymore, and the analogue of (1) for oriented regular graphs is
still an open question, known as the oriented Kesten–McKay conjecture [5]: the ESD of Gd,n should
converge towards a probability distribution on C corresponding in some sense to the spectral measure
of Td. One difficulty for this conjecture is that, because the adjacency matrix Ad,n of Gd,n is no longer
Hermitian, the tracial moments ETrAk

d,n, k ≥ 0, do not continuously determine the (now complex-
valued) mean ESD of Ad,n. In fact, as Ad,n is not even normal, neither do the star moments ETrAw

d,n

defined for any bit string w := w1 · · ·wk on the alphabet Σ := {1, ∗}, where Aw
d,n := Aw1

d,n · · ·A
wk
d,n,

and A∗
d,n stands for the adjoint matrix of Ad,n =: A1

d,n (said differently, A∗
d,n is the adjacency matrix

of the graph G∗
d,n obtained from Gd,n by reversing each of its arcs). Nonetheless, investigating the

star moments of regular digraphs remains interesting from a combinatorial perspective, and their
convergence towards the corresponding star moments of the regular directed tree suggests that the
conjecture holds true.

By definition, the d-regular directed tree Td is the unique infinite, connected, and acyclic digraph
in which every vertex has constant in- and out-degree d ≥ 2. In other words, Td is the Cayley
graph of the free group Fd := ⟨e1, . . . , ed⟩ where unlike its symmetric version, the generators have
no relations (see Figure 1b). We identify the vertex set of Td with Fd, the root vertex o ∈ Td

corresponding to the identity element, and we let Ad denote the adjacency matrix.



STAR MOMENTS OF REGULAR DIRECTED GRAPHS AND TREES 3

Theorem 1 (Convergence of star moments for uniform d-regular digraphs). For every k ≥ 0 and
every w ∈ Σk,

1

n
ETrAw

d,n −−−→
n→∞

Md(w) := Aw
d (o, o),

where Aw
d (v, v

′) is defined for any pair of vertices v, v′ ∈ Td by

Aw
d (v, v

′) :=
∑

v0,v1...,vk−1,vk∈Td

v0=v, vk=v′

Aw1
d (v0, v1)A

w2
d (v1, v2) · · ·Awk

d (vk−1, vk).

Note that Aw
d (v, v

′) = 1{v=v′} if w = ∅ ∈ Σ0 is the empty word. In any case, all summands
of Ad(v, v

′) are either 0 or 1, and each non-zero summand corresponds to a solution (i1, . . . , ik) ∈ [d]k

to the word problem
v · ew1

i1
· · · ewk

ik
= v′

in the free group Fd, where e∗i denotes the inverse of ei =: e1i . We call such a solution (i1, . . . , ik) a
w-path from v to v′, which we can also picture as

v =: v0
w1 v1

w2 · · · wk−1 vk−1
wk vk := v′,

where vj := v · ew1
i1

· · · ewj

ij
for all 0 ≤ j ≤ k. In plain words, Md(w) is the cardinal of the set P(w) of

all w-paths from o to o (or from any other vertex to itself, by transitivity of the Cayley graph Td).
We stress that we do not consider any randomness on Td: in this respect, our purpose is different
from Kesten [10], who studied spectral properties of random walks on the undirected regular tree Td.

In fact, Theorem 1 is a consequence of the following general criterion, similar to [11, Theorem 1.1]:
under a growth assumption on the number of short cycles, we show that the star moments of
deterministic d-regular digraphs converge to the star moments of the d-regular directed tree Td.

Theorem 2 (Convergence of star moments for deterministic d-regular digraphs). Let Gn, n ≥ 1,

be a d-regular digraph with adjacency matrix An on a vertex set Vn. Let k ≥ 1 and suppose that for
every j ∈ [k], the number cj(Gn) of cycles with length j in Gn (see (4)) fulfills

cj(Gn)

|Vn|
−−−→
n→∞

0. (2)

Then for every word w ∈ Σk,
1

|Vn|
TrAw

n −−−→
n→∞

Md(w). (3)

Our last result is a combinatorial derivation of a formula for Md(w), which requires some notation.
Recall that a partition π of [k] can also be seen as the equivalence relation ∼π on [k] such that
i ∼π j ⇐⇒ ∃V ∈ π, {i, j} ⊆ V for all i, j ∈ [k]. We say that π is non-crossing, written π ∈ NC(k),
if i1 ∼π j1, i2 ∼π j2 =⇒ j1 ∼π i2 for all 1 ≤ i1 < i2 < j1 < j2 ≤ k. The cardinal |NC(k)| is
equal to the ubiquitous Catalan number Ck := 1

k+1

(
2k
k

)
, which is also [15] the cardinal |NC2(2k)| of

the non-crossing pair partitions of [2k] (where each block has size 2). We further say that π is an
alternating non-crossing partition of w (π ∈ ANC(w)) if for every block V := {i1 < . . . < im} ∈ π,
the subword w|V := wi1 · · ·wim of w is alternating, that is either of the form w|V = 1∗ · · · 1∗ or
w|V = ∗1 · · · ∗1 (so w and all blocks of π must have even size).
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Theorem 3 (Combinatorial formula for Md(w)). For every k ≥ 0 and every w ∈ Σk,

Md(w) =
∑

π∈ANC(w)

(∏
V ∈π

(−1)
|V |
2

−1C |V |
2

−1

)
d|π|.

Notably, our proof shows that the w-paths may be counted by an inclusion-exclusion principle
involving non-crossing pair partitions, thus explaining the presence of signs and Catalan numbers.

We mention that Theorems 1 and 3 may be recovered by taking a detour to free probability from
a theorem of Nica [12], see Section 3, where we also put the oriented Kesten–McKay conjecture in
more context. Our main motivation for this work is to provide direct combinatorial proofs, which
we do in Section 2.
Acknowledgments. We would like to thank Pierre Youssef for suggesting to work on this problem
and Charles Bordenave for informing us about [12].

2. Direct combinatorial proofs

2.1. Convergence of star moments. In this section, we prove Theorem 2 and its corollary, The-
orem 1. Let G be a multigraph with adjacency matrix A and vertex set V . We call a sequence
of j ≥ 1 distinct arcs ε1, . . . , εj (read in any cyclic order) a plain cycle of length j in G if each of
the pairs {ε1, ε2}, . . . , {εj−1, εj}, {εj , ε1} has a common vertex (we disregard the arc orientations).
Discounting the cyclic orderings, the number of plain cycles with length j in G is then given by

cj(G) :=
1

2j

∑
w∈Σj

∑
v

Aw1(v0, v1) · · ·Awj (vj−1, vj), (4)

the second summation ranging over every v := (v0, . . . , vj−1, vj = v0) ∈ V j+1 such that the sequence(
(vi−1, vi)

wi
)
1≤i≤j

is injective, where (v, v′)1 := (v, v′) and (v, v′)∗ := (v′, v) for all v, v′ ∈ V .

Proof of Theorem 2. Write v ∈ Cn,k if there exists a vertex v′ ∈ Vn at distance at most k from v

(i.e., Aw′
n (v, v′) > 0 for some w′ ∈ Σj , with j ≤ k) and belonging to a cycle of length at most k

in Gn. Note that, by union bound,

|Cn,k| ≤
k∑

i=1

(2d)i
k∑

j=1

j cj(Gn) ≤ k2(2d)k
k∑

j=1

cj(Gn).

Thus, on the one hand,

1

|Vn|
∑

v∈Cn,k

Aw
n (v, v) ≤ k2(2d2)

k

∑k
j=1 cj(Gn)

|Vn|
−−−→
n→∞

0, (5)

using the trivial upper bound Aw
n (v, v) ≤ dk and (2). On the other hand, for v /∈ Cn,k, no vertex

accessible in at most k steps from v belongs to a cycle of length at most k. Since Gn is d-regular,
the ball BGn(v, k) of radius k around v must then look exactly like the ball BTd

(o, k). In particular,
Aw

n (v, v) = Aw
d (o, o) for all v ∈ Vn \ Cn,k, and thus

1

|Vn|
∑

v ̸∈Cn,k

Aw
n (v, v) =

|Vn| − |Cn,k|
|Vn|

Aw
d (o, o) −−−→

n→∞
Md(w). (6)
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Adding (5) and (6) then shows as stated that

1

|Vn|
TrAw

n =
1

|Vn|
∑

v∈Cn,k

Aw
n (v, v) +

1

|Vn|
∑

v/∈Cn,k

Aw
n (v, v) −−−→

n→∞
Md(w). □

Remark 2.1. As we can see from the proof, the condition (2) implies more generally that Gn → Td

with respect to the “oriented” Benjamini–Schramm topology: for every k ≥ 1, the balls of radius k

in Gn are eventually isomorphic to the ball of radius k in Td. As such, Theorem 2 constitutes the
non-symmetric version of [1, Proposition 14].

Next, we show that the growth condition (2) of Theorem 2 holds in expectation for the uniform
d-regular digraph Gd,n.

Lemma 2.2 (Gd,n has few short cycles on average). For every k ≥ 1,

1

n
E ck(Gd,n) −−−→

n→∞
0.

Proof. To estimate this expectation, it is convenient to work with the so called configuration model CMd,n,
whose construction we briefly recall. First, to each vertex i ∈ [n] we attach d unique incoming half-
arcs ε+i+(p−1)n, p ∈ [d], and another d unique outgoing half-arcs ε−i+(q−1)n, q ∈ [d]. Second, we choose
uniformly at random a bijection fd,n joining each of the nd outgoing half-arcs to one of the nd

incoming half-arcs (so there are (nd)! possible choices for the bijection fd,n). This gives rise to a
random multigraph CMd,n on [n] in which the number of arcs Ad,n(i, j) from i to j equals the
number of pairs (p, q) ∈ [d]2 such that f

(
ε+i+(p−1)n

)
= ε−j+(q−1)n. Also, the distribution of CMd,n

conditional on the event

Sd,n : “CMd,n is simple” =
{
Ad,n(i, i) = 0 and Ad,n(i, j) ≤ 1 for all i ̸= j ∈ [n]

}
coincides with the law of Gd,n: L(Gd,n) = L(CMd,n | Sd,n). Now, the expected number E ck

(
CMd,n

)
of cycles with length k is easy to estimate from (4):

E ck(CMd,n) ≤
1

2k
· 2k · nk · dk P

(
fd,n(ε

+
1 ) = ε−2 , . . . , fd,n(ε

+
k−1) = ε−k , fd,n(ε

+
k ) = ε−1

)
=

(2nd)k (nd− k)!

2k (nd)!

∼ 2k−1

k
,

by Stirling’s formula. Furthermore, the probability P(Sd,n) of CMd,n being simple was computed
in [9] and is known [7] to be bounded away from zero as n → ∞. Hence

1

n
E ck(Gd,n) =

1

n
E[ck(CMd,n) | Sd,n] ≤

E ck(CMd,n)

nP(Sd,n)
−−−→
n→∞

0,

which concludes the proof. □

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Let (np)p≥1 be an increasing sequence of integers tending to ∞. By Lemma 2.2,
the convergence

1

np
ck
(
Gd,np

)
−−−→
p→∞

0

holds in expectation, and thus also in probability. A classical application of the Borel–Cantelli lemma
shows that it further holds almost surely along a subsequence: there exists (n′

p)p≥1
⊆ (np)p≥1 such

that
1

n′
p

ck

(
Gd,n′

p

)
−−−→
p→∞

0

almost surely. Then Theorem 2 entails that

1

n′
p

TrAw
d,n′

p
−−−→
p→∞

Md(w)

holds almost surely. Since TrAw
d,n′

p
≤ n′

p d
k, the dominated convergence theorem then yields

1

n′
p

ETrAw
d,n′

p
−−−→
p→∞

Md(w).

We have just showed that every subsequence of 1
n ETrAw

d,n, n ≥ 1, admits a further subsequence
converging to Md(w), so Theorem 1 is proved. □

2.2. Combinatorial formula for Md(w). Before establishing Theorem 3, let us warm up with a
simple necessary condition for the set P(w) of w-paths from o to o to be non-empty.

Lemma 2.3. If w := w1 · · ·wk is a word on Σ such that P(w) ̸= ∅, then w is balanced: w ∈ {1∗, ∗1}p

with k = 2p.

Proof. We proceed by induction on k. The lemma holds trivially if k = 0. Suppose k ̸= 0. By
assumption, there exists a w-path p := (i1, . . . , ik) from v0 := o to itself:

p = v0
w1 v1

w2 · · · wk vk = v0,

with vj := ew1
i1

· · · ewj

ij
, 0 ≤ j ≤ k, where we recall that the generators e1, . . . , ed have no relations.

In particular v1 ̸= v0 (because ei1 ̸= o), and thus k ≥ 2. Let 2 ≤ r ≤ k be the smallest index for
which vr = v0, so

o = v0 = vr := ew1
i1

(
ew2
i2

· · · ewr−1

ir−1

)
ewr
ir
, that is, ewr

ir
ew1
i1

=
(
ew2
i2

· · · ewr−1

ir−1

)−1
.

Since the generators have no relations, this forces i1 = ir and w1 ̸= wr (in other words, Td has no
cycle so the arc taken in v0

w1 v1 must match the one in vr−1
wr vr = v0). Thus w is of the form

w = 1u∗v or w = ∗u1v where u = w2 · · ·wr−1 and v := wr+1 · · · vk, and

p = v0
w1 v1

w2 · · · wr−1 vr−1︸ ︷︷ ︸
u-path

wr vr = v0
wr+1 vr+1

wr+2 · · · wk vk︸ ︷︷ ︸
v-path

= v0. (7)

By induction, the smaller words u and v are balanced, and thus w is also balanced. □
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•v0
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v7

•
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•
v5•

v9

(a) p = (i, j, j, k, ℓ, ℓ, k, i,m,m), k /∈ {i, ℓ}.
(Arcs in T ∗

d are drawn with a dashed line.)

•
1
1

•
2
1

•
3
∗

•
4
∗

•
5
1

•
6
∗

•
7
1

•
8
∗

•
9
∗

•
10
1

(b) π =
{
{1, 8}, {2, 3}, {4, 7}, {5, 6}, {9, 10}

}
,

with ◁π = {(1, 4), (4, 5)} and B(π) =
{
{4, 7}, {5, 6}

}
.

Figure 2. (a) A w-path p and (b) its skeleton π := σw(p), for w := 11∗∗1∗1∗∗1.

A consequence of Lemma 2.3 is that Md(w) = 0 if w is not balanced, so Theorem 3 is proved for
such a word since then ANC(w) = ∅. Note also that Theorem 3 holds if w is the empty word ∅,
because ANC(∅) := {∅} is reduced to the empty partition and P(∅) := {∅} is reduced to the empty
path. We henceforth assume w := w1 · · ·w2p non-empty and balanced. The decomposition (7) of a
w-path (from o to o) with respect to its first return time to the origin is clearly unambiguous. Putting
aside the choice of vertices along the path, this gives rise to a “skeleton” which as we now claim can
be encoded as a certain partition π ∈ ANC(w) whose every block V ∈ π has cardinal |V | = 2;
we write π ∈ ANC2(w) and call it an alternating non-crossing pair partition of w. Specifically,
let p := (i1, . . . , i2p) ∈ P(w) and denote by r ∈ {2, . . . , 2p} its first return time to o, that is
vj := ew1

i1
· · · ewj

ij
̸= o for every 1 ≤ j < r, and vr = o. Then the skeleton of p is defined inductively

as

σw(p) :=
{
{1, r}

}
∪
{
V + 1 : V ∈ σu(i2, . . . , ir−1)

}
∪
{
V + r : V ∈ σv(ir+1, . . . , i2p)

}
,

where u := w2 · · ·wr−1 and v := wr+1 · · ·w2p, with the base case σ∅(∅) := ∅ for the unique ∅-path ∅.
Essentially, a block V := {j < k} in σw(p) means that vj , . . . , vk−1 ̸= vj−1 = vk, i.e., k is the first
return time to the vertex visited at time j − 1.

Conversely, given an alternating non-crossing pair partition π ∈ ANC2(w) of w, what is σ−1
w {π},

the subset of w-paths p := (i1, . . . , i2p) ∈ P(w) with skeleton σw(p) = π? Clearly, since each block
V := {j < k} ∈ π indicates a segment of the path where it exits and first returns to the vertex vj−1,
we must have ij = ik, i.e., the arc taken at time j to exit vj−1 must be taken again at time k (but
“backwards”, since wj ̸= wk) in order to return to vj−1. This condition alone does of course not
prevent a premature return vj′ = vj−1 for some j′ ∈ {j + 1, . . . , k − 1}. A premature return at
time j′ can however only happen if

(i) wj′ ̸= wj (the arc at time j′ must be taken in the opposite direction as when exiting vj−1),
and

(ii) j′ is the lower element in its block, U := {j′ < k′} ∈ π, which is directly surrounded by V :
j < j′ < k′ < k and there is no other block {j′′ < k′′} ∈ π with j < j′′ < j′ < k′ < k′′ < k.

In case (i) and (ii) hold, we write j ◁π j′ as well as U ∈ B(π), and say that j, j′ form a bad pair
and that U is a bad block. See Figure 2 for an illustration. Summarizing, for a w-path (i1, . . . , i2p)
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to have skeleton π, we must have ij ̸= ij′ if j, j′ form a bad pair (i.e., j ◁π j′), and ij = ij′ if j, j′

belong to the same block (j ∼π j′). It should be clear that these requirements are also sufficient:

Lemma 2.4. The map σw : P(w) → ANC2(w) is surjective: for every π ∈ ANC2(w),

σ−1
w {π} =

{
(i1, . . . , i2p) ∈ [d]2p

∣∣∣∣∣ ∀(j, j′) ∈ [2p]2,

{
j ∼π j′ =⇒ ij = ij′

j ◁π j′ =⇒ ij ̸= ij′

}
. (8)

Furthermore,∣∣σ−1
w {π}

∣∣ = ∏
V ∈π

(
d− 1{V ∈B(π)}

)
. (9)

Proof. First, the expression given for the cardinal (9) is always positive because d ≥ 2, and is easily
derived from (8): for each block V := {j < k} ∈ π, there are d degrees of freedom for the choice of
ij = ik ∈ [d], except if V is a bad block, in which case there is one degree of freedom less (because
ij = ik must be different from ij′ , where j ◁π j

′). It remains to prove (8), which we do by induction
on the balanced word w := w1 · · ·w2p. There is nothing to prove if p = 0. Suppose p ≥ 1 and
consider the decomposition of π with respect to the block containing 1,

π :=
{
{1, r}

}
∪
{
V + 1 : V ∈ π(u)

}
∪
{
V + r : V ∈ π(v)

}
,

where u := w2 · · ·wr−1, v := wr+1 · · ·w2p, and

π(u) :=
{
V − 1 : V ∈ π, V ⊆ {2, . . . , r − 1}

}
∈ ANC2(u),

π(v) :=
{
V − r : V ∈ π, V ⊆ {r + 1, . . . , 2p}

}
∈ ANC2(v).

For j ∈ [r − 2], write j ∈ J if wj+1 ̸= w1 and the block {j < k} ∈ π(u) containing j in π(u) is not
surrounded by any other block (i.e., there is no {j′ < k′} ∈ π(u) with j′ < j < k < k′). Because of
the previous decomposition and the definition of ◁π, we then have

◁π =
{
(1, j + 1) : j ∈ J

}
∪
{
(j + 1, j′ + 1) : j ◁π(u) j′

}
∪
{
(j + r, j′ + r) : j ◁π(v) j′

}
.

Recall also that {1, r} ∈ π indicates that the w-paths with skeleton π first return to o at time r.
Thus

(i1, . . . , i2p) ∈ σ−1
w {π} ⇐⇒

{
i1 = ir, ∀j ∈ J, ij+1 ̸= i1,

(i2, . . . , ir−1) ∈ σ−1
u

(
π(u)

)
, (ir+1, . . . , i2p) ∈ σ−1

v

(
π(v)

)
,

and, by the induction hypothesis,

(i1, . . . , i2p) ∈ σ−1
w {π} ⇐⇒



i1 = ir, ∀j ∈ J, ij+1 ̸= i1,

∀(j, j′) ∈ {2, . . . , r − 1}2,
{
(j − 1) ∼π(u) (j′ − 1) =⇒ ij = ij′ ,

(j − 1)◁π(u) (j′ − 1) =⇒ ij ̸= ij′ ,

∀(j, j′) ∈ {r + 1, . . . , 2p}2,
{
(j − r) ∼π(v) (j′ − r) =⇒ ij = ij′ ,

(j − r)◁π(v) (j′ − r) =⇒ ij ̸= ij′ ,

⇐⇒ ∀(j, j′) ∈ [2p]2,

{
j ∼π j′ =⇒ ij = ij′ ,

j ◁π j′ =⇒ ij ̸= ij′ .
□

We can now complete the proof of Theorem 3.
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Proof of Theorem 3. Let w := w1 · · ·w2p be a balanced word on Σ. It follows from Lemma 2.4 that
the set P(w) of w-paths from o to o may be partitioned with respect to their skeleton as

P(w) =
⊔

π∈ANC2(w)

σ−1
w {π},

and passing to the cardinal, we get

Md(w) =
∑

π∈ANC2(w)

∏
V ∈π

(
d− 1{V ∈B(π)}

)
=

∑
π∈ANC2(w)

∑
A⊆B(π)

(−1)|A| d|π|−|A|,

by expanding out the product1. Now, given π ∈ ANC2(w) and A ⊆ B(π), we construct a coarser
partition π′ := γ(π,A) from π by merging, for each bad pair (j, j′) ∈ A, the block containing j′ into
its surrounding block (the one containing j). In other words, ∼π′ is the smallest equivalence relation
on [2p] containing ∼π∪A. For instance, if π is the partition of Figure 2b and A := {(4, 5)}, then π′ :=

γ(π,A) =
{
{1, 8}, {2, 3}, {4, 5, 6, 7}, {9, 10}

}
. It is clear that the conditions (i) and (ii) of forming a

bad pair guarantee that π′ remains non-crossing and alternating w.r.t. w: π′ ∈ ANC(w). Further,
π′ has exactly |A| fewer blocks than π, which has p blocks, so (−1)|A| d|π|−|A| = (−1)p−|π′| d|π

′|.
Conversely, given π′ ∈ ANC(w), any pair partition π which is finer than π′ (i.e., ∼π ⊆ ∼π′)
automatically leads to an alternating non-crossing pair partition π ∈ ANC2(w) of w having a certain
set of bad pairs. Therefore,

Md(w) =
∑

π′∈ANC(w)

(−1)p−|π′| d|π
′|

∑
π∈ANC2(w)

π⪯π′

∑
A⊆B(π)

γ(π,A)=π′

1,

where we wrote π ⪯ π′ for ∼π ⊆ ∼π′ . Since

(−1)p−|π′| =
∏
V ∈π′

(−1)
|V |
2

−1,

it remains to observe that ∑
π∈ANC2(w)

π⪯π′

∑
A⊆B(π)

γ(π,A)=π′

1 =
∏
V ∈π′

C |V |
2

−1
(10)

to conclude. But constructing π ∈ ANC2(w) such that π ⪯ π′ and γ(π,A) = π′ for some A ⊆ B(π)

is equivalent to partitioning each block V := {i1, . . . , i2m} ∈ π′ using an alternating pair partition
of w|V containing the block {1, 2m}. Since w|V is already alternating (because π′ ∈ ANC(w)), this
amounts to choosing a non-crossing pair partition of {2, . . . , 2m−1}, i.e., an element of NC2(2m−2).
Then (10) follows from the well-known fact |NC2(2m− 2)| = Cm−1, see [15, Exercise 61]. □

1At the level of sets, this amounts to writing

σ−1
w {π} =

{
(i1, . . . , i2p) ∈ [d]2p : ∀(j, j′) ∈ [d]2p, j ∼π j′ =⇒ ij = ij′

}
\ ⋃

j◁πj′

{
(i1, . . . , i2p) ∈ [d]2p : ij = i′j

}

and using the inclusion-exclusion formula.
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3. Free probability and the oriented Kesten–McKay conjecture

3.1. Free probability. Let us start this concluding section by showing how Theorems 1 and 3
may be recovered from Nica’s work [12]. Free probability is a vast field initiated by Voiculescu;
we only introduce the bare minimum and refer to [14] for detail. The general framework is that
of non-commutative variables x, y, . . . in some unital algebra A endowed with an adjoint operator ∗

and a linear form φ : A → C such that φ(1) = 1 and φ(x∗x) ≥ 0 for all x ∈ A. The pair (A, φ)

is called a non-commutative probability space, where the state φ plays the rôle of an expectation.
The distribution of x or more generally, the (joint) distribution of (x1, . . . , xk) is given by all mixed
moments φ(xi1 · · ·xiℓ) for ℓ ≥ 1 and (i1, . . . , iℓ) ∈ [k]ℓ, which themselves may be expressed through
the moment-cumulant formula [14, Lecture 11]:

φ(x1 · · ·xk) =
∑

π∈NC(k)

∏
V ∈π

V :={i1<···<iℓ}

κℓ(xi1 , . . . , xiℓ), (11)

where the free cumulants κℓ : Aℓ → C, ℓ ≥ 1, are defined inductively so that (11) holds for any
k ≥ 1 and any non-commutative variables x1, . . . , xk ∈ A. Similarly to the log-Laplace transform
of classical random variables, the free cumulants of (x1, . . . , xk) may be gathered into the so called
R-transform [14, Lecture 16]:

R(x1,...,xk)(z1, . . . , zk) :=
∞∑
ℓ=1

∑
i1,...,iℓ∈[k]

κℓ(xi1 , . . . , xiℓ) zi1 · · · ziℓ , (12)

which is a formal series in non-commutative indeterminates z1, . . . , zk. Analogously to independence
for classical random variables, x1, . . . , xk are free if R(x1,...,xk)(z1, . . . , zk) = Rx1(z1) + · · ·+Rxk

(zk),
which is commonly phrased by the sentence “mixed cumulants vanish” (i.e., κℓ(xi1 , . . . , xiℓ) = 0 for
every ℓ ≥ 1 and every non-constant sequence (i1, . . . , iℓ) ∈ [k]ℓ).

Nica [12] showed that for P1,n, . . . , Pd,n ∈ {0, 1}n×n uniform, independently chosen permutation
matrices, there exists a non-commutative probability space (A, φ) and free variables u1, . . . , ud ∈ A

such that:

(a) There is the convergence of mixed moments

1

n
ETrPw1

i1,n
· · ·Pwk

ik,n
−−−→
n→∞

φ
(
uw1
i1

· · ·uwk
ik

)
,

for every k ≥ 1, every (i1, . . . , ik) ∈ [d]k, and every word w ∈ Σk.
(b) The ui’s are Haar unitaries, in the sense that u∗iui = uiu

∗
i = 1 and φ(uki ) = 0 for every k ≥ 1.

It follows from (a) and linearity that the star moments of Ad,n := P1,n + · · · + Pd,n converge to
those of ad := u1 + · · ·+ ud, and it is easy to see that Ad,n is distributed like the adjacency matrix
of the configuration model CMd,n introduced in the proof of Theorem 1: then, we may again
condition on CMd,n being simple (Ad,n(i, i) = 0 and Ad,n(i, j) ≤ 1 for all i ̸= j ∈ [n]) to deduce the
star-moment convergence, for every word w on Σ,

1

n
ETrAw

d,n =
1

n
E
[
TrAw

d,n | CMd,n is simple
]
−−−→
n→∞

φ(awd ),

of the uniform d-regular digraph Gd,n with adjacency matrix Ad,n.
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Finally, we check that the star moments φ(awd ) coincide with the number Md(w) of w-paths in Td.
Using (b), it was derived in [13] that (for every i ∈ [d])

Rui,u
∗
i
(z1, z2) =

∞∑
k=1

(−1)k−1Ck−1

[
(z1z2)

k + (z2z1)
k
]
.

By freeness, Ra,a∗(z1, z2) = Ru1,u
∗
1
(z1, z2) + · · ·+Rud,u

∗
d
(z1, z2) = dRu1,u

∗
1
(z1, z2), and the structure

of this R-transform shows that the free cumulants κℓ(a
w1
d , . . . , awℓ

d ) (which we recover from (12))
vanish if w := w1 · · ·wℓ is not alternating:

κℓ(a
w1
d , . . . , awℓ

d ) =

d (−1)p−1Cp−1, if w is alternating: w = (1∗)p or w = (∗1)p,

0, otherwise.

Recalling the definition of ANC(w), the moment-cumulant formula (11) then easily yields

φ(awd ) =
∑

π∈ANC(w)

(∏
V ∈π

(−1)
|V |
2

−1C |V |
2

−1

)
d|π|,

as in Theorem 3.

3.2. The oriented Kesten–McKay conjecture. Theorem 1 states that the uniform d-regular
digraph Gd,n converges in star moments to the d-regular directed tree Td. As we saw in the previous
section, the star moments of Td agree with those of the sum ad := u1+ · · ·+ud of d free Haar unitary
elements in some non-commutative probability space (A, φ). This implies the convergence of mean
empirical singular value distributions: for every z ∈ C and every continuous bounded function f ,

1

n
ETr f

(√(
Ad,n − zIn

)∗(
Ad,n − zIn

))
−−−→
n→∞

φ

(
f

(√
(ad − z1)∗(ad − z1)

))
,

that is, ∫
f(t)µ|Ad,n−z|(dt) −−−→

n→∞

∫
f(t)µ|ad−z|(dt), (13)

where X − z means that we subtract z times the identity element to X, and µ|X| is the spectral
measure of the positive operator |X| :=

√
XX∗ (i.e., µ|X| is the unique real probability measure

having the same moments as |X|, as given by the Riesz–Markov–Kakutani theorem).
Although X ∈ {Ad,n, ad} is not a normal element, there still exists [8] a unique probability

measure µX (on C), known as the Brown measure of X, such that∫
log |z − λ|µX(dλ) =

∫
log(t)µ|X−z|(dt)

for every z ∈ C. When X = Ad,n, µX is nothing but the ESD 1
n

∑n
i=1 δλi(Ad,n) of Gd,n. Since the

star moments of X determine (µ|X−z|)z∈C and thus µX , and the star moments of ad and Td coincide,
we can also view µad as the spectral measure of Td. However, we cannot directly use (13) to show

1

n
E

n∑
i=1

f
(
λi(Ad,n)

)
−−−→
n→∞

∫
C
f(z)µad(dz) (14)

because the logarithm is not a bounded function. There still lacks a uniform control on the smallest
singular value of Ad,n−z to validate the oriented Kesten–McKay conjecture (14), see [5, Lemma 4.3].
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